sk-learning 学习(2)

sklearing 训练评估

针对kdd99数据集使用逻辑回归分类训练 然后进行评估 发觉分数有点高的离谱 取出10%数据494021条,并从中选择四分之一作为测试集 结果这么高 是否过拟合了?

import numpy as np
from sklearn import linear_model
from sklearn.externals import joblib
from sklearn import cross_validation
print("data loading ....")
data=np.loadtxt("newfile.csv",delimiter=",",dtype=np.int32)
print("load done....") X=data[:,:-1]
target=data[:,-1] X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,target,test_size=0.25,random_state=1) print("begin fit the model....")
clf=linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None)
score=clf.fit(X_train,y_train).score(X_test,y_test) print("the model have train success, we will save the model to file...")
#s=pickle.dumps(clf)
joblib.dump(clf, 'model.pkl')
#score
print(score) # result output....
data loading ....
load done....
begin fit the model....
dd
the model have train success, we will save the model to file...
0.997449516623

十则交叉验证

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = cross_validation.KFold(4, n_folds=2)
>>> len(kf)
2
>>> print(kf)
sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,
random_state=None)
>>> for train_index, test_index in kf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

sk-learning(2)的更多相关文章

  1. CVPR2018: Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatio-temporal Patterns

    论文可以在arxiv下载,老板一作,本人二作,也是我们实验室第一篇CCF A类论文,这个方法我们称为TFusion. 代码:https://github.com/ahangchen/TFusion 解 ...

  2. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  3. 人工智能(Machine Learning)—— 机器学习

    https://blog.csdn.net/luyao_cxy/article/details/82383091 转载:https://blog.csdn.net/qq_27297393/articl ...

  4. 【Learning Notes】线性链条件随机场(CRF)原理及实现

    1. 概述条件随机场(Conditional Random Field, CRF)是概率图模型(Probabilistic Graphical Model)与区分性分类( Discriminative ...

  5. Statistics and Samples in Distributional Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...

  6. Training spiking neural networks for reinforcement learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...

  7. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Full version of a paper at the 8-th International Conference on Appli ...

  8. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  9. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  10. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

随机推荐

  1. 【linux安装软件步骤】

    一.解析linux应用软件安装包: 通常Linux应用软件的安装包有三种: tar包,如software-1.2.3-1.tar.gz.它是使用UNIX系统的打包工具tar打包的. rpm包,如sof ...

  2. C#中的运算符和表达式

    说起C#运算符和表达式,小伙伴们肯定以为很简单,其实要用好表达式,不是一件容易的事.一个好的表达式可以让你做事半功倍的效果,比如三元表达式,可以让你少写N多个if和case语句. 表达式 由 操作数( ...

  3. PAT 1087【二级最短路】

    二级最短路+二级最短路,就是DP过程吧. 代码稍微注释一些,毕竟贴代码不好.. #include<bits/stdc++.h> using namespace std; typedef l ...

  4. C语言经典算法100例(三)

    1.河内之塔 说明河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市:1883年法国数学家 Edoua ...

  5. puppet的一个Bug

    前篇文章写了使用puppet管理500多台服务器,当然只是一部分,最主要的还是puppet脚本的编写,这个我会在以后的文章中一点一点写出来. 今天要写的是puppet的一个bug,版本是puppet ...

  6. CODEVS 3027 线段覆盖2

    首先,先看题.....(虽然比较简单 3027 线段覆盖 2    时间限制: 1 s  空间限制: 128000 KB 题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标,坐 ...

  7. Unity 行为树-共享变量

    一.引言 有以下小场景: 节点A:发现了 敌人. 节点B:追逐敌人. 对于同一个敌人物体,节点AB之间是如何传递数据 的呢? 行为树节点AB之间,需要一个中间变量Temp来传递数据. A发现了敌人,将 ...

  8. Scala_Load csv data to hive via spark2.1

    code: package com.liupu import org.apache.spark.{ SparkContext, SparkConf } import org.apache.spark. ...

  9. mybatis深入理解(一)之 # 与 $ 区别以及 sql 预编译

    mybatis 中使用 sqlMap 进行 sql 查询时,经常需要动态传递参数,例如我们需要根据用户的姓名来筛选用户时,sql 如下: select * from user where name = ...

  10. 005 Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...