sk-learning 学习(2)

sklearing 训练评估

针对kdd99数据集使用逻辑回归分类训练 然后进行评估 发觉分数有点高的离谱 取出10%数据494021条,并从中选择四分之一作为测试集 结果这么高 是否过拟合了?

import numpy as np
from sklearn import linear_model
from sklearn.externals import joblib
from sklearn import cross_validation
print("data loading ....")
data=np.loadtxt("newfile.csv",delimiter=",",dtype=np.int32)
print("load done....") X=data[:,:-1]
target=data[:,-1] X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,target,test_size=0.25,random_state=1) print("begin fit the model....")
clf=linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None)
score=clf.fit(X_train,y_train).score(X_test,y_test) print("the model have train success, we will save the model to file...")
#s=pickle.dumps(clf)
joblib.dump(clf, 'model.pkl')
#score
print(score) # result output....
data loading ....
load done....
begin fit the model....
dd
the model have train success, we will save the model to file...
0.997449516623

十则交叉验证

>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = cross_validation.KFold(4, n_folds=2)
>>> len(kf)
2
>>> print(kf)
sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False,
random_state=None)
>>> for train_index, test_index in kf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
.. automethod:: __init__

sk-learning(2)的更多相关文章

  1. CVPR2018: Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatio-temporal Patterns

    论文可以在arxiv下载,老板一作,本人二作,也是我们实验室第一篇CCF A类论文,这个方法我们称为TFusion. 代码:https://github.com/ahangchen/TFusion 解 ...

  2. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  3. 人工智能(Machine Learning)—— 机器学习

    https://blog.csdn.net/luyao_cxy/article/details/82383091 转载:https://blog.csdn.net/qq_27297393/articl ...

  4. 【Learning Notes】线性链条件随机场(CRF)原理及实现

    1. 概述条件随机场(Conditional Random Field, CRF)是概率图模型(Probabilistic Graphical Model)与区分性分类( Discriminative ...

  5. Statistics and Samples in Distributional Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...

  6. Training spiking neural networks for reinforcement learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...

  7. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Full version of a paper at the 8-th International Conference on Appli ...

  8. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  9. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  10. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

随机推荐

  1. c#入门学习-Action和Func的使用

    我的理解就是:Action和Func就是官方声明好的代理using System; namespace funcActionDemo{    class MainClass    {        p ...

  2. mobile web页面调试方法

    此文已由作者张含会授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 开发过程问题排查 Chrome Emulation关键词:使用方便 模拟各种设备尺寸.像素比.自定义user ...

  3. 强联通分量之kosaraju算法

    首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在. kosaraju算法用来寻找强联通分量.对于图G,它首先随便找个结点dfs,求出 ...

  4. 洛谷P1378 油滴扩展

    P1378 油滴扩展 题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界.必须等一个油滴扩展完 ...

  5. Spring MVC那点事儿

    自问自答 1 Spring MVC的启动原理? spring mvc是基于ioc容器的,因此需要先创建IOC容器,才能创建对应的spring mvc执行环境. IOC容器是通过ContextLoade ...

  6. 存储引擎:MySQL系列之七

    一.MyISAM存储引擎 缺点: 不支持事务 最小粒度锁:表级 读写相互阻塞,写入不能读,读时不能写 不支持MVCC(支持多版本并发控制机制) 不支持聚簇索引 不支持数据缓存 不支持外键 崩溃恢复性较 ...

  7. Git Remote (转)

    基本使用 git是一个分布式代码管理工具,所以可以支持多个仓库,在git里,服务器上的仓库在本地称之为remote. 直接clone一个仓库: $: git clone git@search.ued. ...

  8. Sublime Text 3 多行游标

    选中要修改的地方ctrl+D ,要跳过不需要修改的选中的就用ctrl+k+d 选中要修改的地方ctrl+D,选中所有要修改的 alt+f3 ctrl+A  ,然后ctrl+shift+L 按住shif ...

  9. crawlspider的源码学习

    Spider基本上能做很多事情了,但是如果你想爬取全站的话,可能需要一个更强大的武器.CrawlSpider基于Spider,但是可以说是为全站爬取而生.CrawlSpiders是Spider的派生类 ...

  10. 解决Eclipse导入Gradle项目时在 Building gradle project info 一直卡住

    问题描述 在使用 Eclipse 导入 Gradle 项目时一直卡住,不能导入项目 问题解决   解决办法主要有两种:一是直接下载 gradle 离线包,二是修改项目的 ..\gradle\wrapp ...