$\newcommand{\align}[1]{\begin{align*}#1\end{align*}}$题意:对于一个字符串$s$,定义$C(s)$为$s$中(出现次数最多的字母)出现的次数,问长度为$n$,字符集大小为$m$且$C(s)=k$的字符串有多少个

设$f_{i,j,k}$表示字符集大小为$i$,长度为$j$且$C(s)\leq k$的方案数,那么有$\align{f_{i,j,k}=\sum\limits_{l=0}^k\binom jlf_{i-1,j-l,k}}$(枚举最大字符的出现次数$l$,这个字符在$s$中出现的不同方案为$\align{\binom jl}$,剩下字符组成字符串的方案数为$f_{i-1,j-l,k}$)

这个DP式的第三维下标$k$没有变化,不妨删掉这维,并稍微推导一下:

$\align{f_{i,j}&=\sum\limits_{j=0}^k\binom jlf_{i-1,j-l}\\\dfrac{f_{i,j}}{j!}&=\sum\limits_{j=0}^k\dfrac1{l!}\dfrac{f_{i-1,j-l}}{(j-l)!}}$

这是卷积的形式,记$\align{F_i(x)=\sum\limits_{j=0}^k\dfrac{f_{i,j}x^j}{j!}}$,则$\align{F_i(x)=F_{i-1}(x)\left(\sum\limits_{j=0}^k\dfrac1{j!}\right)}$,直接快速幂就可以了,于是$\align{f_{i,j,k}=n!\left[x^n\right]\left(\sum\limits_{j=0}^k\dfrac1{j!}\right)^m}$,答案为$f_{i,j,k}-f_{i,j,k-1}$

#include<stdio.h>
#include<string.h>
const int mod=998244353;
typedef long long ll;
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[131072],N,iN;
void pre(int n){
	int i,k;
	for(N=1,k=0;N<n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void swap(int&a,int&b){a^=b^=a^=b;}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(3,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i));
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(w,a[i/2+j+k]);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
void pow(int*a,int n,int k,int*s){
	int i;
	s[0]=1;
	pre((n+1)<<1|1);
	while(k){
		ntt(a,1);
		if(k&1){
			ntt(s,1);
			for(i=0;i<N;i++)s[i]=mul(s[i],a[i]);
			ntt(s,-1);
			for(i=n+1;i<N;i++)s[i]=0;
		}
		for(i=0;i<N;i++)a[i]=mul(a[i],a[i]);
		ntt(a,-1);
		for(i=n+1;i<N;i++)a[i]=0;
		k>>=1;
	}
}
int fac[50010],rfac[50010],a[131072],b[131072];
int solve(int n,int m,int k){
	int i;
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(i=0;i<=k;i++)a[i]=rfac[i];
	pow(a,n,m,b);
	return mul(b[n],fac[n]);
}
int main(){
	int n,m,k,i;
	scanf("%d%d%d",&n,&m,&k);
	fac[0]=1;
	for(i=1;i<=n;i++)fac[i]=mul(fac[i-1],i);
	rfac[n]=pow(fac[n],mod-2);
	for(i=n;i>0;i--)rfac[i-1]=mul(rfac[i],i);
	printf("%d",(de(solve(n,m,k),solve(n,m,k-1))+mod)%mod);
}

[xsy2579]counting的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  3. ZOJ3944 People Counting ZOJ3939 The Lucky Week (模拟)

    ZOJ3944 People Counting ZOJ3939 The Lucky Week 1.PeopleConting 题意:照片上有很多个人,用矩阵里的字符表示.一个人如下: .O. /|\ ...

  4. find out the neighbouring max D_value by counting sort in stack

    #include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...

  5. 1004. Counting Leaves (30)

    1004. Counting Leaves (30)   A family hierarchy is usually presented by a pedigree tree. Your job is ...

  6. 6.Counting Point Mutations

    Problem Figure 2. The Hamming distance between these two strings is 7. Mismatched symbols are colore ...

  7. 1.Counting DNA Nucleotides

    Problem A string is simply an ordered collection of symbols selected from some alphabet and formed i ...

  8. uva 11401 Triangle Counting

    // uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...

  9. JSONKit does not support Objective-C Automatic Reference Counting(ARC) / ARC forbids Objective-C objects in struct

    当我们在使用JSONKit处理数据时,直接将文件拉进项目往往会报这两个错“JSONKit   does not support Objective-C Automatic Reference Coun ...

随机推荐

  1. python-使用unittest和ddt实现数据驱动

    一.数据驱动的概念 相同测测试脚本使用不同的测试数据来执行,测试数据和测试行为完全分离,这样的测试脚本设计模式成为数据驱动.测试框架使用unittest 和ddt模块相结合的方式 二.unittest ...

  2. python中的字符问题

    unicode/unicodebig/utf8 在python上默认情况下都解析不了 window系统中 ASCLL对应的是GBK unicode|unicodebigendian 对应 utf-16 ...

  3. python pip install XXX出现报错问题

    重装Anacondas后,将pip 和python.exe路径加入到环境变量后直接在cmd窗口进行pip 操作,报错如下 报错内容为: pip is configured with locations ...

  4. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

  5. 团队冲刺Alpha(七)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...

  6. 使用百度Echarts制作力导向图

    最近项目需求制作一个力导向图来展示企业的画像等关系信息,故想到了百度Echarts的关系图,在这使用Echarts3.0版本来实现.先上效果图,再看代吗 哎,本来想整个工程扔出来,发现好像没地方上传附 ...

  7. 【CF #313】

    B题为啥交换一下搜索顺序就会TLE啊QAQ C题原来要预处理乘法逆元才能过啊QAQ 我沙茶啊我QAQ[还是太弱 嗯A题就是道水题 B题就是字符串Hash+暴力搜 C题就是组合数+容斥原理

  8. BZOJ1027 [JSOI2007]合金 【计算几何 + floyd】

    题目 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的 原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金的 ...

  9. 如何用js让表格的行也能拖动

    行拖动的实现思路非常简单,选中一行,往上拖就与上面的行交换位置,往下拖就与下面的行交换位置.问题是如何得到交换行.我见过一个非常详细的教程,它会把表格里的每一行的高度与Y坐标计算出来,换言之,都时是比 ...

  10. EAR、JAR、WAR(IT)

    EAR文件包括整个项目,内含多个ejb module(jar文件)和web module(war文件)   JAR.WAR.EAR.在文件结构上,三者并没有什么不同,它们都采用zip或jar档案文件压 ...