【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林
题目描述
输入
输出
样例输入
3 4
1 3 10 8
2 1 9 2
6 7 4 6
样例输出
19
题解
最小环套树森林
首先一眼费用流,然而数据量过大直接卡掉(同时卡掉的还有zkw费用流= =)(跪烂那些用KM算法水过的dalao。。。)
然后经过观察可以发现,如果在行列之间连边,那么答案构成的一定是一个环套树森林。
证明:设行数+列数为n,则构成的图中,点数和边数都为n。如果把每条边选择的方案看作是边的方向的话(a/b中选a看作a->b),那么每个点的出度一定均为1。这样的图一定是环套树森林。因此命题得证。
然后要求的就是无向图的最小环套树森林。
很容易发现环套树森林也是一个拟阵,拟阵最优化问题即可使用贪心算法(Kruscal)求解。
那么本题就和求最小生成树的方法一样了,按边权排序,从小到大加。只需要在原并查集的基础之上,维护每个连通块是否有环,连边时判断即可。
时间复杂度$O(nm\log nm)$
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
struct data
{
int x , y , z;
bool operator<(const data &a)const {return z < a.z;}
}a[N];
int f[N] , c[N];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
int main()
{
int n , m , i , j , tx , ty;
long long ans = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &a[(i - 1) * m + j].z) , a[(i - 1) * m + j].x = i , a[(i - 1) * m + j].y = j + n;
sort(a + 1 , a + n * m + 1);
for(i = 1 ; i <= n + m ; i ++ ) f[i] = i;
for(i = 1 ; i <= n * m ; i ++ )
{
tx = find(a[i].x) , ty = find(a[i].y);
if(tx == ty && !c[tx]) c[tx] = 1 , ans += a[i].z;
if(tx != ty && !(c[tx] && c[ty])) f[tx] = ty , c[ty] |= c[tx] , ans += a[i].z;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林的更多相关文章
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
- [BZOJ4883][Lydsy1705月赛]棋盘上的守卫[最小基环树森林]
题意 有一大小为 \(n*m\) 的棋盘,要在一些位置放置一些守卫,每个守卫只能保护当前行列之一,同时在每个格子放置守卫有一个代价 \(w\) ,问要使得所有格子都能够被保护,需要最少多少的代价. \ ...
- 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法
[BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
- BZOJ 4883 [Lydsy2017年5月月赛]棋盘上的守卫(最小生成环套树森林)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...
- bzoj4883 [Lydsy1705月赛]棋盘上的守卫 最小生成基环树森林
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4883 题解 每一行和每一列都必须要被覆盖. 考虑对于每一行和每一列都建立一个点,一行和一列之间 ...
- BZOJ4886: [Lydsy1705月赛]叠塔游戏(环套树森林&贪心)
4886: [Lydsy1705月赛]叠塔游戏 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 198 Solved: 76[Submit][Stat ...
随机推荐
- Windosw系统——常见的问题
1. 写在某些软件后就无法打开网页,但可以上QQ. 在卸载了一些VPN或USB无线设备后,发现自己网页打不开,但是ping能ping通,也可以登录QQ. 解决办法: (1): 开始运行——regedi ...
- Java - 基础数据类型的极值
- MySQL备份工具percona-xtrabackup安装
1.安装xtrabackup的yum源 rpm -ivh https://www.percona.com/redir/downloads/percona-release/redhat/latest/p ...
- DB - RDMS - MySQL优化
慢SQL会消耗打来难过的数据库CPU资源,特别是频繁执行的慢SQL语句,会造成大量任务的堆积,CPU瞬间增大.
- 再次写给VC++ Windows开发者
距离我的上一篇文章--写给VC++ Windows开发的初学者已经4年多时间过去了,感慨于时光如梭之余,更感慨于这么多年来(从1998年我初学VC 算起吧)到如今其实我仍然还只是个初学者而已.看看之前 ...
- Windows下安装Python数据库模块--MySQLdb
## 1.下载MySQLdb [去官网](http://pypi.python.org/pypi/MySQL-python/) 下载对应的编译好的版本(现在官网最新版本为1.2.5): MySQL-p ...
- 实例讲解如何利用jQuery设置图片居中放大或者缩小
大家有没有见过其他网站的图片只要鼠标放上去就能放大,移出去的时候就能缩小,而且一直保持居中显示!其实jQuery提供一个animate函数可以使图片放大和缩小,只要改变图片的长和高就OK啦!但是ani ...
- Ball CodeForces - 12D
传送门 N ladies attend the ball in the King's palace. Every lady can be described with three values: be ...
- Nginx技术深入剖析
Nginx软件功能模块说明 核心功能模块(Core functionality):主要对应配置文件的Main区块和Events区块. 标准的http功能模块: 企业 场景常用的Nginx http功能 ...
- contextmanager 的基本使用
from contextlib import contextmanager 简化 With 语句: class MyResource: def query(self): print ...