我们都知道,已知前序和中序的序列是可以唯一确定一个二叉树的。

初始化时候二叉树为:==================

前序遍历序列,           O=================

中序遍历序列,           ======O===========

红色部分是左子树,黑色部分是右子树,O是根节点

如上图所示,O是根节点,由前序遍历可知,

根据这个O可以把找到其在中序遍历当中的位置,进而,知道当前这个根节点O的左子树的前序遍历和中序遍历序列的范围。

以及右子树的前序遍历和中序遍历序列的范围。

到这里返现出现了重复的子问题,而且子问题的规模没有原先的问题大,即红色部分和黑色部分

而联系这两个子问题和原先的大问题的纽带是这个找到的根节点。

可以选择用递归来解决这个问题,递归的结束条件是子问题序列里面只有一个元素。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树的前序和中序遍历序列,构造这个二叉树。

笔记:

你可以假定,这棵树里面没有重复的节点。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
TreeNode *build(vector<int> &preorder, int left1, int right1, vector<int> &inorder, int left2, int right2)
{
    //对错误输入的判断
    if(right1 - left1 != right2 - left2)
    {
        return NULL;
    }
    if(right1 >= preorder.size() || right2 >= inorder.size())
    {
        return NULL;
    }

if(left1 == right1 && left2 == right2)
    {
        //只有一个节点的情况
        TreeNode *root = new TreeNode(preorder[left1]);
        return root;
    }
    else if(left1 < right1 && left2 < right2)
    {
        //多个节点的情况,生成当前的根节点
        TreeNode *root = new TreeNode(preorder[left1]);
        int i;
        for(i = left2; i <= right2; i++)
        {
            //找到中序的当前根节点的位置
            if(inorder[i] == preorder[left1])
            {
                break;
            }
        }
        if(i > right2)
        {
            return NULL;
        }
        /*
         * 递归的构建左边二叉树的和右边的二叉树
         * 左子树{left1 + 1, i - 1}                   前序[left1 + 1, left1 + i - left2]           中序[left2, i - 1]
         * 右子树{left1 + i - left2 +1, right2}       前序[left1 + i - left2 + 1, right1]          中序[i + 1, right2]
         * 前序以left1 + i - left2为分割点
         * 中序以i为分割点
         */
        root->left = build(preorder, left1 + 1, left1 + i - left2, inorder, left2, i - 1);
        root->right = build(preorder, left1 + i - left2 + 1, right1, inorder, i + 1, right2);
        return root;
    }
    else
    {
        return NULL;
    }

}

TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder)
{
    return build(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

// 树中结点含有分叉,
//                  6
//              /       \
//             7         2
//           /   \
//          1     4
//               / \
//              3   5
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(7);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(3);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(5);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

int pre[7] = {6, 7, 1, 4, 3, 5, 2};
    int in[7] = {1, 7, 3, 4, 5, 6, 2};
    vector<int> preorder(pre, pre + 7), inorder(in, in + 7);

TreeNode *root = buildTree(preorder, inorder);

vector<vector<int> > ans = levelOrder(root);

for (int i = 0; i < ans.size(); ++i)
    {
        for (int j = 0; j < ans[i].size(); ++j)
        {
            cout << ans[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
    DestroyTree(root);
    return 0;
}

结果输出:
6
7 2
1 4
3 5
ps.利用的是层次遍历测试的输出结果。
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
												

【构建二叉树】01根据前序和中序序列构造二叉树【Construct Binary Tree from Preorder and Inorder Traversal】的更多相关文章

  1. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  3. [Swift]LeetCode105. 从前序与中序遍历序列构造二叉树 | Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  4. LeetCode105 从前序和中序序列构造二叉树

    题目描述: 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9 ...

  5. LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal 由前序和中序遍历建立二叉树 C++

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  6. LeetCode 105. 从前序与中序遍历序列构造二叉树(Construct Binary Tree from Preorder and Inorder Traversal)

    题目描述 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9, ...

  7. Leetcode105. Construct Binary Tree from Preorder and Inorder Traversal前序与中序构造二叉树

    根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15 ...

  8. leetcode题解:Construct Binary Tree from Preorder and Inorder Traversal (根据前序和中序遍历构造二叉树)

    题目: Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume t ...

  9. LeetCode OJ:Construct Binary Tree from Preorder and Inorder Traversal(从前序以及中序遍历结果中构造二叉树)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. HTML5 - 新增的元素,删除的元素

    1,HTML5新增的元素(1)用于构建页面的语义元素:<article>,<aside>,<figcaption>,<figure>,<foote ...

  2. 【BZOJ3926】[Zjoi2015]诸神眷顾的幻想乡 广义后缀自动机

    [BZOJ3926][Zjoi2015]诸神眷顾的幻想乡 Description 幽香是全幻想乡里最受人欢迎的萌妹子,这天,是幽香的2600岁生日,无数幽香的粉丝到了幽香家门前的太阳花田上来为幽香庆祝 ...

  3. Wooden Sticks(hdu1051)

    Wooden Sticks Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  4. wcf读取message内容

    private string MessageToString(ref Message message) { WebContentFormat messageFormat = this.GetMessa ...

  5. vue Element UI 导航高亮

    1. activeIndex 为默认高亮值,根据改变activeIndex的值来改变高亮的值 当页面改变的时候获取当前的路由地址,截取第一个 / 后面的值,就是当前的高亮值了 为什么要截取呢? 因为点 ...

  6. nginx的location

    nginx的location分为普通location和正则location. 在普通location中,匹配规则是最大前缀匹配. 在正则location中,匹配规则是先到先得匹配.(最先匹配的正则lo ...

  7. apache虚拟主机配置: 设置二级目录访问跳转

    <VirtualHost *:> DocumentRoot "d:/www/abc" ServerName www.abc.com Alias /course &quo ...

  8. SUBMIT 用法

    [转自http://lz357502668.blog.163.com/blog/static/16496743201241195817597/] 1.最普通的用法 *Code used to exec ...

  9. 关于mosquitto_internal.h:40:25:#include <uuid/uuid.h> 致命错误的解决

    一.安装mosquitto1.4的时候使用make的时候报以下错误: mosquitto_internal.h:40:25: 致命错误:openssl/ssl.h:没有那个文件或目录 #include ...

  10. NSAttributedStringKey

    NSFontAttributeName; //字体,value是UIFont对象 NSParagraphStyleAttributeName;//绘图的风格(居中,换行模式,间距等诸多风格),valu ...