纠结了好久的一道题,以前是用线段树套平衡树二分做的,感觉时间复杂度和分块差不多了。。。

终于用BIT套函数式线段树了过了,120ms就是快,此题主要是卡内存。

假设离散后有ns个不同的值,递归层数是log2(ns)左右,nlog(ns),主席树是前缀区间,BIT保存修改的值是mlog2(ns)log2(ns)。

虽然这个算出来还是会爆,但是实际上会有一些结点复用,具体设置多少请相信玄学。(2e6左右)

ZOJ的Node*计算内存似乎有问题,必须用int

/*********************************************************
* ------------------ *
* author AbyssFish *
**********************************************************/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
//#pragma pack(4) const int MAX_N = 5e4+;
const int MAX_M = 1e4+;
const int MAX_NM = MAX_N+MAX_M;
const int MAX_D = ;
const int MAX_ND = 0xac*MAX_M+0x42fed;//MAX_D*MAX_N+MAX_M*MAX_D*MAX_D; int b[MAX_NM];
int mp_a[MAX_NM]; int ns, n_; int N, M; struct Cmd
{
int i, j, k;
}qus[MAX_M]; struct Node
{
int lc, rc;
int s;
}p[MAX_ND]; int root[MAX_N];
int cnt; #define lsn p[o].lc,l,md
#define rsn p[o].rc,md+1,r void build(int x,int &o,int l = , int r = ns)
{
p[++cnt] = p[o];
o = cnt;
p[o].s++;
if(r > l){
int md = (l+r)>>;
if(x <= md) build(x,lsn);
else build(x,rsn);
}
} int BIT[MAX_N]; void inst(int x, int d, int &o, int l = , int r = ns)
{
if(o == ){
p[++cnt] = p[o];
o = cnt;
}
p[o].s += d;
if(l < r){
int md = (l+r)>>;
if(x<=md) inst(x,d,lsn);
else inst(x,d,rsn);
} } #define lowbit(x) ((x)&(-x)) void modify_bit(int pos, int x, int d)
{
while(pos <= N){
inst(x,d,BIT[pos]);
pos += lowbit(pos);
}
} typedef vector<int> Prefix; void prefix_bit(int pos, Prefix &res)
{
res.clear();
while(pos > ){
res.push_back(BIT[pos]);
pos -= lowbit(pos);
}
} inline int cal_lft(Prefix &pfx)
{
int re = ;
for(int i = pfx.size()-; i >= ; i--){
re += p[p[pfx[i]].lc].s;
}
return re;
} #define dump(pfx,ch)\
for(i = pfx.size()-; i >= ; i--){\
pfx[i] = p[pfx[i]].ch;\
} Prefix X, Y; int qkth(int k,int l = , int r = ns)
{
if(l == r) return mp_a[l];
else {
int l_cnt = cal_lft(Y)-cal_lft(X);
int md = (l+r)>>, i;
if(k <= l_cnt){
dump(X,lc)
dump(Y,lc)
return qkth(k,l,md);
}
else {
dump(X,rc)
dump(Y,rc)
return qkth(k-l_cnt,md+,r);
}
} } void solve()
{
cnt = ;
memset(BIT+,,sizeof(int)*N);
int i;
for(i = ; i <= N; i++){
root[i] = root[i-];
build(b[i], root[i]);
} for(i = ; i < M; i++){
if(qus[i].j < ){
int pos = qus[i].i;
modify_bit(pos,b[pos],-);
modify_bit(pos,b[pos] = b[qus[i].k],);
}
else {
int L = qus[i].i-, R = qus[i].j;
prefix_bit(L,X);
prefix_bit(R,Y);
X.push_back(root[L]);
Y.push_back(root[R]);
printf("%d\n",qkth(qus[i].k));
}
}
} int * const a = (int *)(p+);
int * const r = a + MAX_NM; void init()
{
scanf("%d%d",&N,&M);
for(int i = ; i <= N; i++){
scanf("%d",a+i);
r[i] = i;
} n_ = N;
char ch[];
for(int i = ; i < M; i++){
scanf("%s",ch);
if(*ch == 'Q') {
scanf("%d%d%d",&qus[i].i,&qus[i].j,&qus[i].k);
}
else {
qus[i].k = ++n_;
r[n_] = n_;
scanf("%d%d",&qus[i].i,a+n_);
qus[i].j = -;
}
} sort(r+,r+n_+,[](int i,int j){ return a[i]<a[j]; });
mp_a[b[r[]] = ns = ] = a[r[]];
for(int i = ; i <= n_; i++) {
int k = r[i];
if(a[k] != a[r[i-]]){
mp_a[b[k] = ++ns] = a[k];
}
else {
b[k] = ns;
}
}
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
//cout<<ceil(log2(MAX_N+MAX_M))+1;
//cout<<sizeof(Node*)<<endl;
//cout<<MAX_ND<<endl;
// cout<<MAX_ND*sizeof(Node)+(MAX_NM)*16+MAX_M*12+MAX_N*8;
// cout<<sizeof(a)+sizeof(root)+sizeof(meo)+sizeof(qus)+sizeof(BIT)<<endl;//sizeof(b)+sizeof(mp_a)+sizeof(r)
p[] = {,,};
X.reserve(MAX_D+);
Y.reserve(MAX_D+); int T; scanf("%d",&T);
while(T--){
init();
solve();
}
return ;
}

ZOJ - 2112 Dynamic Rankings(BIT套主席树)的更多相关文章

  1. ZOJ 2112 Dynamic Rankings(二分,树套树)

    动态区间询问kth,单点修改. 区间用线段树分解,线段树上每条线段存一颗平衡树. 不能直接得到kth,但是利用val和比val小的个数之间的单调性,二分值.log^3N. 修改则是一次logN*log ...

  2. bzoj1901: Zju2112 Dynamic Rankings(BIT套主席树)

    带修改的题主席树不记录前缀,只记录单点,用BIT统计前缀.  对于BIT上每一个点建一棵主席树,修改和询问的时候用BIT跑,在主席树上做就行了.  3k4人AC的题#256...应该不算慢 #incl ...

  3. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  4. 整体二分&cdq分治 ZOJ 2112 Dynamic Rankings

    题目:单点更新查询区间第k大 按照主席树的思想,要主席树套树状数组.即按照每个节点建立主席树,然后利用树状数组的方法来更新维护前缀和.然而,这样的做法在实际中并不能AC,原因即卡空间. 因此我们采用一 ...

  5. ZOJ 2112 Dynamic Rankings(动态区间第 k 大+块状链表)

    题目大意 给定一个数列,编号从 1 到 n,现在有 m 个操作,操作分两类: 1. 修改数列中某个位置的数的值为 val 2. 询问 [L, R] 这个区间中第 k 大的是多少 n<=50,00 ...

  6. 整体二分(SP3946 K-th Number ZOJ 2112 Dynamic Rankings)

    SP3946 K-th Number (/2和>>1不一样!!) #include <algorithm> #include <bitset> #include & ...

  7. ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解

    题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...

  8. ZOJ 2112 Dynamic Rankings(树状数组+主席树)

    题意 \(n\) 个数,\(m\) 个操作,每次操作修改某个数,或者询问某个区间的第 \(K\) 小值. \(1 \leq n \leq 50000\) \(1 \leq m \leq 10000\) ...

  9. BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings

    以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...

  10. ZOJ 2112 Dynamic Rankings (动态第k大,树状数组套主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

随机推荐

  1. centos7-网络与防火墙常用命令

    1.网络配置 vi /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPROTO="static" IPADDR=192.168.163 ...

  2. python练习六十三:文件处理,读取文件内容,按内容生成文件

    python练习六十三:文件处理 假设要读取code.txt文件中内容,code.txt文件内容如下 01 CN Chinese 02 US United States of America 03 J ...

  3. 跨域的问题(jsonp和cors)

    由于浏览器的同源策略,用户想要跨域访问浏览器就会报错,那么就涉及到解决跨域的问题.最近我接触到的解决方法是两个,jsonp和cors. jsonp(json with padding)我们虽然不能直接 ...

  4. epoll中坑人的地方再次学习

    https://blog.csdn.net/linuxheik/article/details/73294658

  5. Google Zxing 生成二维码

    Net Zxing 源码地址 http://zxingnet.codeplex.com/ github 地址 https://github.com/zxing/zxing 新建一个Winform 项目 ...

  6. kmspico

    # process | 在这儿找到了原作者的地址 http://blog.nsfocus.net/kmspico/ | 下面是原作者地址 https://forums.mydigitallife.ne ...

  7. [HZOI 2015]树黑白

    [题目描述] 给定一棵树,要求维护以下操作: 1.M u 将u节点反色 2.Q u 查询u到所有黑色节点距离和 [输入格式] 第一行n,m 表示节点总数和操作次数 之后n-1行,每行u,v表示两个端点 ...

  8. 导出CSV

    public FileResult ExportExcel() { var sbHtml = new StringBuilder(); sbHtml.Append("<table bo ...

  9. checkbox判断选中的三种方法

    方法一: if ($("#checkbox-id")get(0).checked) {     // do something } 方法二: if($('#checkbox-id' ...

  10. hibernate课程 初探单表映射4-1 课程总结

    ORM是一种面向对象编程的方法,用这种方法来避免写数据库底层语言sql语句,这样有利于java的跨平台,扩展.维护.而hirenate是ORM的一种框架 hirbernate开发基本步骤编写配置文档h ...