牛客网多校训练第一场 A - Monotonic Matrix(Lindström–Gessel–Viennot lemma)
链接:
https://www.nowcoder.com/acm/contest/139/A
题意:
求满足以下条件的n*m矩阵A的数量模(1e9+7):
A(i,j) ∈ {0,1,2}, 1≤i≤n, 1≤j≤m.
A(i,j) ≤ A(i+1,j), 1≤i<n, 1≤j≤m.
A(i,j) ≤ A(i,j+1), 1≤i≤n, 1≤j<m.
其中1 ≤ n,m ≤ 1e3。
分析:
考虑01和12的分界线,
是(n,0)到(0,m)的两条不相交(可重合)路径。
平移其中一条变成(n+1,1)到(1,m+1),
变成(n,0)到(0,m)、(n+1,1)到(1,m+1)的严格不相交路径。
套Lindström–Gessel–Viennot lemma,
答案是C(n+m,n) * C(n+m,n) - C(n+m,n+1) * C(n+m,n-1)。
Lindström–Gessel–Viennot lemma简介:
求a1到b1, a2到b2, ..., an到bn的严格不相交路径种数。

计算以上矩阵的行列式即可,其中e(a,b)是从a到b的方法数。
代码:
#include <cstdio> typedef long long int LLI;
const int UP = * + ;
const LLI MOD = 1e9 + ;
LLI f[UP]; // 阶乘 LLI qmod(LLI x, LLI n, LLI mod) { // 快速幂模
x %= mod;
LLI res = ;
while(n) {
if(n & ) res = res * x % mod;
n >>= ;
x = x * x % mod;
}
return res;
} LLI inv(LLI a, LLI mod) { // 逆元
return qmod(a, mod-, mod);
} void constant() { // 预处理阶乘
f[] = ;
for(int i = ; i < UP; i++) f[i] = f[i-] * i % MOD;
} LLI C(int n, int m) { // 组合数,从n个里取m个
return f[n] * inv(f[m]*f[n-m], MOD) % MOD;
} int main() {
constant();
int n, m;
while(~scanf("%d%d", &n, &m)) {
LLI ans = (C(n+m,n) * C(n+m,n) - C(n+m,n+) * C(n+m,n-) % MOD + MOD) % MOD;
printf("%lld\n", ans);
}
return ;
}
牛客网多校训练第一场 A - Monotonic Matrix(Lindström–Gessel–Viennot lemma)的更多相关文章
- 牛客网多校训练第一场 B - Symmetric Matrix(dp)
链接: https://www.nowcoder.com/acm/contest/139/B 题意: 求满足以下条件的n*n矩阵A的数量模m:A(i,j) ∈ {0,1,2}, 1≤i,j≤n.A(i ...
- 牛客网多校训练第一场 I - Substring(后缀数组 + 重复处理)
链接: https://www.nowcoder.com/acm/contest/139/I 题意: 给出一个n(1≤n≤5e4)个字符的字符串s(si ∈ {a,b,c}),求最多可以从n*(n+1 ...
- 牛客网多校训练第一场 J - Different Integers(树状数组 + 问题转换)
链接: https://www.nowcoder.com/acm/contest/139/J 题意: 给出n个整数的序列a(1≤ai≤n)和q个询问(1≤n,q≤1e5),每个询问包含两个整数L和R( ...
- 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)
链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...
- 牛客网多校训练第一场 E - Removal(线性DP + 重复处理)
链接: https://www.nowcoder.com/acm/contest/139/E 题意: 给出一个n(1≤n≤1e5)个整数(范围是1至10)的序列,求从中移除m(1≤m≤min(n-1, ...
- 牛客网多校训练第一场 D - Two Graphs
链接: https://www.nowcoder.com/acm/contest/139/D 题意: 两个无向简单图都有n(1≤n≤8)个顶点,图G1有m1条边,图G2有m2条边,问G2有多少个子图与 ...
- 牛客网多校训练第二场D Kth Minimum Clique
链接:https://ac.nowcoder.com/acm/contest/882/D来源:牛客网 Given a vertex-weighted graph with N vertices, fi ...
- 牛客网多校训练第九场H Cutting Bamboos
题目链接:https://ac.nowcoder.com/acm/contest/889/H 题意:给出n颗竹子的高度,q次询问,每次询问给出l,r,x,y,每次选取[l,r]中的竹子,砍y次砍掉所有 ...
- 牛客网多校第3场C-shuffle card 平衡树或stl(rope)
链接:https://www.nowcoder.com/acm/contest/141/C 来源:牛客网 题目描述 Eddy likes to play cards game since there ...
随机推荐
- YII框架一个请求的生命周期
用户向入口脚本 web/index.php 发起请求. 入口脚本加载应用配置并创建一个应用实例去处理请求. 应用通过请求组件解析请求的路由. 应用创建一个控制器实例去处理请求. 控制器创建一个操作实例 ...
- bitbucket 源代码托管
5个人以下可以免费使用,不限制仓库的数量; 国外的注册需要开启蓝灯FQ; 1.注册账号 maanshancss w1-g1@qq.com;创建仓库; 然后拷贝现有项目 然后提交 然后push; 2.写 ...
- JS实现图片预览与等比缩放
案例仅为图片预览功能,省略图片上传步骤,框架为easyui. HTML代码: @*text-align:center;水平居中 vertical-align: middle;display: tabl ...
- T-SQL语句创建表
USE E_Market --指定当前所操作的数据库 GO CREATE TABLE 表名 ( BID int identity (1,1)NOT NULL, BNAME varch ...
- .netcore2.0 有关配置
1.在部署WebApi 或者网站时常用的2个配置数据库连接字符串.绑定Url地址 2.# 数据库连接字符串配置: 默认的配置文件 appsettings.json 添加配置节点: "Conn ...
- ECharts显示百分比(小数转百分比)
后台数据传递给前端是小数格式,例如:0.2248 前端显示要求为:22.48% 方法,设置tooltip.formatter和yAxis.axisLabel.formatter,两个分别是提示语格式化 ...
- python7
字典-dict 字典也是一种组合数据,没有顺序的组合数据,数据以键值对的方式存在 字典的定义 1.创建空字符串 变量 = {} 或者 变量 = dict() 2 ...
- UNIX 5种I/O模型
Unix 5 I/O模型 I/O操作分为两步: (1)先将数据从 存储介质 (磁盘或者网络等)拷贝到 内核缓冲区,此时称为数据准备好,可以被用户读取. (2)由用户应用程序拷贝内核缓冲区数据 到用户缓 ...
- nodejs的socket.io学习笔记
socket.io学习笔记 1.服务器信息传输: 2.不分组,数据传输: 3.分组数据传输: 4.Socket.io难点大放送(暂时没有搞定): 服务器信息传输 1. // send to curre ...
- v-model的双向数据绑定(表单)
可以用 v-model 指令在表单 <input>.<textarea> 及 <select> 元素上创建双向数据绑定.它会根据控件类型自动选取正确的方法来更新元素 ...