莫比乌斯反演+枚举除法的取值
第二种形式:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。
/**
题目:Problem b
链接:https://vjudge.net/contest/178455#problem/G
题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) ,
满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k , gcd(x,y) 函数为 x 和 y 的最大公约数。
1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
思路:
首先容斥:ans = solve(b,d,k)-solve(b,c-1,k)-solve(a-1,d,k)+solve(a-1,c-1,k); solve(n,m,k)表示x在[1,n],y在[1,m] gcd(x,y)==k的对数。 定义:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。 如何求F(n)? F(n) = (x/n) * (y/n); 要加括号,因为这是取整之后的乘积 根据定义用第二种形式:f(n) = sigma(mu[d/n]*F(d)) (n|d) 这样只要枚举k的倍数一直到min(n,m)就可以了。可是如果k=1,那么枚举一次就是O(N);总复杂度为O(N*N); 实际上可以继续优化; solve(n,m,k)等价于solve(n/k,m/k)表示x在[1,n/k],y在[1,m/k],gcd(x,y)==1的对数。 由于x/i,x/(i+1),x/(i+2)...x/(i+t)存在连续相同的结果,也就是这段区间[l,r]内(n/i)*(m/i)的结果是相同的; 这样i在[l,r] 范围内的(n/i)*(m/i)*mu[i];就等价于 (n/i)*(m/i)*(sum[r]-sum[l-1]); sum表示mu的前缀和。 所以这里可以快速处理。复杂度为sqrt(N); 总时间复杂度为N*sqrt(N); 参考:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + ;
const int maxn = 5e4 + ;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
void init()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(!not_prime[i]){
prime[++tot] = i;
mu[i] = -;
}
for(int j = ; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for(int i = ; i < maxn; i++) sum[i] = sum[i-]+mu[i];
}
LL solve(int n,int m)
{
LL ans = ;
if(n>m) swap(n,m);
int last;
for(int i = ; i <= n; i=last+){
last = min(n/(n/i),m/(m/i));
ans += (LL)(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
int a, b, c, d, k;
init();
cin>>T;
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",solve(b/k,d/k)-solve(b/k,(c-)/k)-solve((a-)/k,d/k)+solve((a-)/k,(c-)/k));
}
return ;
}

Problem b 莫比乌斯反演+枚举除法的取值的更多相关文章

  1. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  2. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  3. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  8. [bzoj2301]Problem b莫比乌斯反演+分块优化

    题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...

  9. 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...

随机推荐

  1. 深度增强学习--DDPG

    DDPG DDPG介绍2 ddpg输出的不是行为的概率, 而是具体的行为, 用于连续动作 (continuous action) 的预测 公式推导 推导 代码实现的gym的pendulum游戏,这个游 ...

  2. DevExpress 自动匹配宽度,及其他使用笔记

    摘自: http://blog.sina.com.cn/s/blog_53b58e7c0101avl4.html GridControl列自动匹配宽度 -- : 327人阅读 评论() 收藏 举报 / ...

  3. LVS+keepalived+nginx

    LVS是Linux Virtual Server的简写,基于4层协议不处理,不响应,只转发,速度更快 wget -c http://www.linuxvirtualserver.org/softwar ...

  4. 试用cocos2dx 3.1.1

    最终有时间,開始全力投入cocos2dx开发了.之前也积累了不少.只是都是基于2.2.2的,3.1.1的版本号也出来一段时间,应该算是成熟了,今天就试试.一个最大的变化就是不须要cygwin了,直接使 ...

  5. 标准C++ I/O库 迭代器让数据自由流动 V8

    IO库的组成 三种流 C++的IO库以流对象为实体.主要有三种流: (1)标准输入输出流 (2)文件输入输出流 (3)字符串输入输出流 流迭代器 输入输出流迭代器 instream_iterator& ...

  6. JAVA简单选择排序算法原理及实现

    简单选择排序:(选出最小值,放在第一位,然后第一位向后推移,如此循环)第一位与后面每一个逐个比较,每次都使最小的置顶,第一位向后推进(即刚选定的第一位是最小值,不再参与比较,比较次数减1) 复杂度: ...

  7. 在weblogic上配置数据源

    转自:http://blog.csdn.net/weijie_search/article/details/2756585 旁白 这是在weblogic9.0+mysql5.1的环境下配置的数据源.其 ...

  8. sonatype Nexus3 install on Kubernetes

    Nexus 搭建代码 apiVersion: extensions/v1beta1 kind: Deployment metadata: name: nexus3 labels: app: nexus ...

  9. Android常用传感器用法一览(2)

    在Android2.3 gingerbread系统中,google提供了11种传感器供应用层使用. #define SENSOR_TYPE_ACCELEROMETER       1 //加速度#de ...

  10. vConsole

    说明 由于移动端项目在手机中调试时不能使用chrome的控制台,而vconsole是对pc端console的改写 使用方法 使用 npm 安装: npm install vconsole 使用webp ...