题意

PDF

就是求凸包点集的直径。

题解

当然选择旋转卡壳。

然后是实现上的技巧:

当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转

即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0

根据Cross(A,B) - Cross(A,C) = Cross(A,B-C)

化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0

画个图就能发现,这样找的是对于一条边三角形的最大高。为什么这样是对的呢?

凸包上一个点到其他点的距离是一个凸函数。然后在两条直线慢慢旋转的过程中,可以考虑直接转一条边,这样求出的是到这条直线的最大距离,显然就是对踵点对。

实现的时候初始化可以直接暴力转,因为均摊是\(O(n)\)的。时间复杂度\(O(T n \log n)\)。


由于坐标都是整数,而又不涉及需要实数运算的操作,所以`Point`类可以直接实现为整数坐标。
```cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define rg register
#define il inline
#define co const
templateil T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
templateT read(T&x)
{
return x=read();
}
using namespace std;
typedef long long ll;

struct Point

{

int x,y;

Point(int x=0,int y=0)
:x(x),y(y){} bool operator<(co Point&rhs)co
{
return x<rhs.x||(x==rhs.x&&y<rhs.y);
} bool operator==(co Point&rhs)co
{
return x==rhs.x&&y==rhs.y;
}

};

typedef Point Vector;

Vector operator-(co Point&A,co Point&B)

{

return Vector(A.x-B.x,A.y-B.y);

}

int Cross(co Vector&A,co Vector&B)

{

return A.xB.y-A.yB.x;

}

int Dot(co Vector&A,co Vector&B)

{

return A.xB.x+A.yB.y;

}

int Dist2(co Vector&A,co Vector&B)

{

return (A.x-B.x)(A.x-B.x)+(A.y-B.y)(A.y-B.y);

}

vectorConvexHull(vector&p)

{

sort(p.begin(),p.end());

p.erase(unique(p.begin(),p.end()),p.end());

int n=p.size();
int m=0;
vector<Point>ch(n+1);
for(int i=0;i<n;++i)
{
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)
--m;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;--i)
{
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)
--m;
ch[m++]=p[i];
}
if(n>1)
--m;
ch.resize(m);
return ch;

}

int Diameter2(vector&points)

{

vectorp=ConvexHull(points);

int n=p.size();

if(n1)

return 0;

if(n2)

return Dist2(p[0],p[1]);

p.push_back(p[0]); // avoid %

int ans=0;

for(int u=0,v=1;u<n;++u)

{

for(;

LA4728 Squares的更多相关文章

  1. [LeetCode] Word Squares 单词平方

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  2. 卡通图像变形算法(Moving Least Squares)附源码

    本文介绍一种利用移动最小二乘法来实现图像变形的方法,该方法由用户指定图像中的控制点,并通过拖拽控制点来驱动图像变形.假设p为原图像中控制点的位置,q为拖拽后控制点的位置,我们利用移动最小二乘法来为原图 ...

  3. Leetcode: Word Squares && Summary: Another Important Implementation of Trie(Retrieve all the words with a given Prefix)

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  4. [LintCode] Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  5. HDU 1264 Counting Squares(线段树求面积的并)

    Counting Squares Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. RSS(Residual Sum of Squares)的自由度为什么是n-1呢

    [转载请注明出处]http://www.cnblogs.com/mashiqi 在回归问题中,偶尔我们会遇到求方差的估计的情况.举了例子,我们常常通过Gaussian分布${\cal N}(\mu , ...

  7. poj-3739. Special Squares(二维前缀和)

    题目链接: I. Special Squares There are some points and lines parellel to x-axis or y-axis on the plane. ...

  8. [CareerCup] 7.5 A Line Cut Two Squares in Half 平均分割两个正方形的直线

    7.5 Given two squares on a two-dimensional plane, find a line that would cut these two squares in ha ...

  9. POJ 2002 Squares

    二分.... Squares Time Limit: 3500MS Memory Limit: 65536K Total Submissions: 14530 Accepted: 5488 Descr ...

随机推荐

  1. dubbo应用

    一.安装配置 cd /usr/local/ wget http://www.apache.org/dist/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar. ...

  2. some words

    For we meet in an hour of change and challenge,              in a dacade of hope and fear,   in an a ...

  3. Java程序执行Linux命令(JSP运行其他程序)

    java程序中要执行linux命令主要依赖2个类:Process和Runtime 首先看一下Process类: ProcessBuilder.start() 和 Runtime.exec 方法创建一个 ...

  4. 【Node.js】'readline' 逐行读取、写入文件内容

    [转]运用readline逐行读取的两种实现 效果图如下: 左边1.log 为源文件 右边1.readline.log为复制后的文件 下边为命令行输出 实现方式一: [javascript] view ...

  5. LeetCode 之 TwoSum

    题目: Given an array of integers, find two numbers such that they add up to a specific target number. ...

  6. matplotlib之散点图

    环境:windows系统,anaconda3 64位,python 3.6 1.初认识 基本代码如下: import numpy as np import matplotlib.pyplot as p ...

  7. scala学习手记38 - 方法命名约定和for表达式

    方法命名约定 之前在学习<运算符重载>一节时曾经说过一个方法命名约定:方法的第一个字符决定了方法的优先级.现在再说另一个命名约定:如果方法以冒号(:)结尾,则调用目标是运算符后面的实例. ...

  8. scala学习手记16 – scala中的static

    前面两节学了scala的对象和伴生对象,这两个在使用的时候很有些java的静态成员的意思. scala中没有静态字段和静态方法.静态成员会破坏scala所支持的完整的面向对象模型.不过可以通过伴生对象 ...

  9. PowerDesigner之SQL表格设计

    设计表格我觉得用PowerDesigner比起在SQL Server中设计表格简单快捷许多. 首先,我们新建一个Model(可以使用快捷键Ctrl + N) 在PowerDesigner中侧边栏有浮动 ...

  10. python time 和 datetime 模块的简介

    时间处理 time 和 datetime import timeimport datetimeprint time.time() #时间戳显示为1508228106.49print time.strf ...