题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数。两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同。

分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时的方案数根据放球模型是C(N+t-1,N-1),其中t是s-(k个盒子超过其数目的最小数量)。显然t<0该方案不存在。

而k个盒子超过其数目的最小数量 是 对应盒子数+1的和。

因为t的值可能很大,所以需要用Lucas定理计算组合数。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e5+;
const int mod = 1e9+;
LL Pow(LL x, LL n, LL p)
{
LL res=;
while(n)
{
if(n&) res=x*res%p;
x=x*x%p;
n>>=;
}
return res;
} LL Lucas(LL n, LL k, LL p)
{
if(k>n-k) k=n-k;
LL res=;
while(n&&k){
LL n0=n%p, k0=k%p;
LL a=,b=;
for(LL i=n0; i>n0-k0; i--) a=a*i%p;
for(LL i=; i<=k0; i++) b=b*i%p;
res = res*a*Pow(b, p-, p)%p;
n/=p; k/=p;
}
return res;
} LL f[];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
LL n,s;
while(scanf("%lld %lld",&n,&s)==){
for(int i=;i<n;++i){
scanf("%lld", &f[i]);
}
LL up = 1LL << n;
LL ans = Lucas(n+s-,n-,mod);
for(int i=;i<up;++i){
int bit = ;
LL t= s;
for(int j=;j<n;++j){
if(i &(<<j)){
bit++;
t -= f[j] + ;
}
}
if(t<) continue;
if(bit & ) ans = (ans+mod -Lucas(n+t-,n-,mod))%mod;
else ans = (ans+Lucas(n+t-,n-,mod))%mod;
}
printf("%lld\n",ans);
}
return ;
}

CodeForces - 451E Devu and Flowers (容斥+卢卡斯)的更多相关文章

  1. Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】

    题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...

  2. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  3. CF451E Devu and Flowers(容斥)

    CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...

  4. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  5. codeforces 451E. Devu and Flowers 容斥原理+lucas

    题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C( ...

  6. codeforces 451E Devu and Flowers

    题意:有n个瓶子每个瓶子有 f[i] 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案. 思路: 如果每个瓶子的花有无穷多.那么这个问题可以转化为  s支花分到 ...

  7. Codeforces 451E Devu and Flowers(组合计数)

    题目地址 在WFU(不是大学简称)第二次比赛中做到了这道题.高中阶段参加过数竞的同学手算这样的题简直不能更轻松,只是套一个容斥原理公式就可以.而其实这个过程放到编程语言中来实现也没有那么的复杂,不过为 ...

  8. Codeforces Round #258 (Div. 2) 容斥+Lucas

    题目链接: http://codeforces.com/problemset/problem/451/E E. Devu and Flowers time limit per test4 second ...

  9. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

随机推荐

  1. Oracle记录学习

    --基本函数--select name,count(id) from work_test group by name having count(id)>1--select upper(name) ...

  2. Python之Seaborn

    install: pip install seaborn official examples: https://seaborn.pydata.org/examples/index.html 在mac上 ...

  3. 【vijos】1770 大内密探(树形dp+计数)

    https://vijos.org/p/1770 不重不漏地设计状态才能正确的计数QAQ 虽然可能最优化是正确的,但是不能保证状态不相交就是作死.... 之前设的状态错了... 应该设 f[i][0] ...

  4. Deep Networks for Image Super-Resolution with Sparse Prior

    深度学习中潜藏的稀疏表达 Deep Networks for Image Super-Resolution with Sparse Prior http://www.ifp.illinois.edu/ ...

  5. python入门(五):面向对象

    面向对象术语 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集合中每个对象所共有的属性和方法.对象是类的实例. 类变量:类变量在整个实例化的对象中是公用的.类变量定义在类中且 ...

  6. 如何正确使用Google搜索

    “” 双引号表示完全匹配,结果中必须出现与搜索文本完全相同的内容 A -B 搜索包含A但不包含B的结果(请注意A后面的空格不能省略) filetype 搜索对应类型的文件.例如:中国防火墙 filet ...

  7. mongodb在32位机的连接

    Windows 32bit版本安装Mongodb时,会发生的下面问题 2016-05-09T00:09:45.124+0800 I STORAGE  [initandlisten] exception ...

  8. Delphi MessageBox

    MessageBox对话框是比较常用的一个信息对话框,其不仅能够定义显示的信息内容.信息提示图标,而且可以定义按钮组合及对话框的标题,是一个功能齐全的信息对话框信息提示图标,而且可以定义按钮组合及对话 ...

  9. 带jsk证书,请求https接口

    首先是三个返回的实体类 BaseVo.java package https2; import java.io.Serializable; import java.lang.reflect.Invoca ...

  10. 淘宝订单数据转CSV

    <html> <body> <div id="result"> </div> <div> <textarea st ...