HDU 5942 Just a Math Problem 容斥 莫比乌斯反演
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数。
思路:题目意思很简单,但是着重于推导和简化,这是数论题的一贯思路,其中g(k)的方程可以看出是求k的无平方因子的个数,那么题目就是求1~n的无平方因字数的和了。
首先我们可以从莫比乌斯函数入手。
从\( \mu(d) \)的性质有,当d为素数单次连积时\( \mu(d)=(-1)^k\),其余d不为1时\( \mu(d)=0\)
那么可知\( \mu^{2}(d) \)在d满足条件时一定为正值1,故g(k)可化为\( \sum_{d | i} \mu^{2}(d) \) 且$$ans = \sum_{i = 1}^{n}{\sum_{d | i} \mu^{2}(d)} $$
接下来从容斥方向考虑。其实我们直接枚举素因子连乘的k,那么由\(\mu(d)\)函数的性质,可知当存在\(k^2 | d\)时,\(\mu(k)\)是不为0的,这样就去掉了素因子次数大于等于2的d,那么式子又可化成$$ {\mu^{2}(d)}= { \sum_{k^2|d}{\mu(k)} }$$
进一步$${\sum_{k=1}^{n}\sum_{k^2 | d} {\mu(k)}\lfloor\frac{n}{d}\rfloor }$$
\(\lfloor\frac{n}{d}\rfloor\)是1~n中被d整除的个数。
其中d为k^2的整倍数。
交换求和符号,将式子化成
$$\sum_{k = 1}^{n}{\mu(k)}\sum_{i=1}^{\lfloor \frac{n}{k^2}\rfloor} \lfloor \frac{n}{k^{2} i} \rfloor$$
接着枚举倍数求和就可以了,其中后个求和函数在1e6范围内可以预处理。
/** @Date : 2016-12-04-22.09
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/ #include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
const LL mod = 1e9 + 7;
const double eps = 1e-8; int sum1[N];
int pri[N];
int mu[N];
bool vis[N];
int c = 0; void mobius()
{
MMF(vis);
mu[1] = 1; for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j])
mu[i * pri[j]] = -mu[i];
else
{
mu[i * pri[j]] = 0;
break;
}
}
}
} int sum(LL n)//
{
if(n < N && sum1[n])//小于N下且已经处理了直接返回预处理的值
return sum1[n];
LL t = 0;
for(LL i = 1, j = 0; i <= n; i = j + 1)
{
j = n / (n / i);
t += n / i * (j - i + 1);//优化,大于n一半的直接加
}
t %= mod;
if(n >= N)
return t;
else
return sum1[n] = t; } int main()
{
int T;
mobius();
while(~scanf("%d", &T))
{
int cnt = 0;
while(T--)
{
LL n;
LL ans = 0;
scanf("%lld", &n);
for(LL i = 1; i <= n / i; i++)//枚举sqrt(n)的因子
if(mu[i])
ans = (ans + sum(n/i/i) * mu[i]) % mod;//注意i取整 printf("Case #%d: %lld\n", ++cnt, (ans + mod) % mod);
}
} return 0;
}
HDU 5942 Just a Math Problem 容斥 莫比乌斯反演的更多相关文章
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- cf900D. Unusual Sequences(容斥 莫比乌斯反演)
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- HDU - 5942 :Just a Math Problem (莫比乌斯)
题意:略. 思路:问题转化为1到N,他们的满足mu[d]!=0的因子d个数. 即1到N的因子的莫比乌斯系数平方和. (经验:累加符号是累加的个数,我们把常数提到前面,然后用杜教筛累加个数即可. ht ...
- Codeforces.547C.Mike and Foam(容斥/莫比乌斯反演)
题目链接 \(Description\) 给定n个数(\(1\leq a_i\leq 5*10^5\)),每次从这n个数中选一个,如果当前集合中没有就加入集合,有就从集合中删去.每次操作后输出集合中互 ...
- BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥&莫比乌斯反演)(线性多项式多个数求LCM)
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 240 Solved: 118[Submit][S ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
随机推荐
- 一:yarn 介绍
yarn的了出现主要是为了拆分jobtracker的两个核心功能:资源管理和任务监控,分别对应resouceManager(RM)和applicationManager(AM).yarn中的任 ...
- 衡量经济活动的价值:国内生产总值(GDP, Gross Domestic Product)
定义 GDP是在给定的时期内,经济生产的所有最终产品和服务的市场价值. 由于每一件产品或者服务的交易都会涉及到一个买者和一个卖着,买者支出的每一元钱必然成为卖者收入的每一元钱,因此,GDP既可以看成是 ...
- 正确使用memset
今天做了一道素数打表的题我在使用一个数组记录是否为素数的时候使用了memset,将数组里面的数都清为1,代表是素数,不是素数,就改成0,我在判断这一个数是否为素数是依据也是是0还是1,结果一直存在问题 ...
- Scala快速入门-基础
HelloWorld 从HelloWorld开始,使用scala IDE编辑器. 新建scala project 新建scala object 编写HelloWorld run as scala ap ...
- ZOJ 1909 I-Square
https://vjudge.net/contest/67836#problem/I Given a set of sticks of various lengths, is it possible ...
- PowerMock用法[转]
转:http://agiledon.github.io/blog/2013/11/21/play-trick-with-powermock/ 当我们面对一个遗留系统时,常见的问题是没有测试.正如Mic ...
- C#中的反射和扩展方法的运用
前段时间做了一个练手的小项目,采用的是三层架构,也就是Models,IDAL,DAL,BLL 和 Web , 在DAL层中各个类中有一个方法比较常用,那就是 RowToClass ,顾名思义,也就是将 ...
- Error:Unable to tunnel through proxy. Proxy returns "HTTP/1.1 400 Bad Request"
(1) 网上下载了一个android应用:死活用不了,查了以下,原来是android studio版本不对,于是把android studio的版本从2.2 升级到3.0,后来发现没法升级,只能下载, ...
- 第22天:js改变样式效果
一.输出语句 1.alert:弹出警示框(用的非常少,用户体验不好)完整写法:window.alert(“执行语句”):window对象,窗口,一般情况可省略alert(123); 2.console ...
- context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置
context.getResourceAsStream获取的是部署在服务器上面的文件位置 而不是我们本地的工程位置 意思是说获取的都是web下面的文件位置