http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773

参考1:FWT讲解 https://www.cnblogs.com/RabbitHu/p/9182047.html

参考2:题解 https://www.cnblogs.com/ivorysi/p/9178577.html

(令$\oplus$表示异或)

设$dp[i][j]$表示第$i$天$j$编号城市货物数。

因为只有$i \oplus j$的答案有一个1才能转移,所以$i\oplus j=2^k$

根据异或的性质变成$i\oplus 2^k=j$。

想办法利用它把转移方程写成卷积的形式。

设$b[2^i]=1$,其余都是$0$,于是就有:

$dp[i][j]=dp[i-1][j]+\sum_{a\oplus k=j}dp[i-1][a]*b[k]$

你会发现把$dp$递归展开之后实际上就是一个卷积套卷积……套$t$次的过程,$FWT$运算加快速幂即可。

注意读入输出优化。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=<<;
const int p=1e9+;
const int inv=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
void write(int x){
if(x>)write(x/);
putchar(''+x%);
}
inline int add(int x,int y){
x+=y;if(x>=p)x-=p;return x;
}
inline int sub(int x,int y){
x-=y;if(x<)x+=p;return x;
}
void FWT(int a[],int n,int on){
for(int i=;i<n;i<<=){
for(int j=;j<n;j+=(i<<)){
for(int k=;k<i;k++){
int u=a[j+k],t=a[j+k+i];
a[j+k]=add(u,t);
a[j+k+i]=sub(u,t);
if(on==-){
a[j+k]=(ll)a[j+k]*inv%p;
a[j+k+i]=(ll)a[j+k+i]*inv%p;
}
}
}
}
}
int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
int n,t,m,a[N],b[N];
int main(){
n=read(),t=read(),m=<<n;
for(int i=;i<m;i++)a[i]=read();
for(int i=;i<m;i++){
if(i-(i&-i)==)b[i]=;
}
FWT(a,m,);FWT(b,m,);
for(int i=;i<m;i++)a[i]=(ll)a[i]*qpow(b[i],t)%p;
FWT(a,m,-);
for(int i=;i<m;i++){
write(a[i]);putchar(' ');
}
puts("");
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

51NOD 1773:A国的贸易——题解的更多相关文章

  1. [51Nod 1773] A国的贸易

    [51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...

  2. 【51nod】1773 A国的贸易

    题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...

  3. 「NOIP2009」最优贸易 题解

    「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...

  4. 【51Nod1773】A国的贸易 解题报告

    [51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...

  5. 51nod1773 A国的贸易

    基准时间限制:2 秒 空间限制:524288 KB 分值: 40  A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...

  6. 51nod 1812 树的双直径 题解【树形DP】【贪心】

    老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...

  7. 51Nod1773 A国的贸易 多项式 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...

  8. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  9. 51NOD 1709:复杂度分析——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1709 (我什么时候看到二进制贡献才能条件反射想到按位处理贡献呢……) 参 ...

随机推荐

  1. pip源设置 & pandas安装

    pip的官方源python.pypi.org貌似被墙,换用国内安装源 网上的设置方法都是基于Unix的,Windows下的设置略麻烦. 更新..\Lib\site-packages\pip下的cmdo ...

  2. 「日常训练」湫湫系列故事——设计风景线(HDU-4514)

    题意与分析 中文题目,木得题意的讲解谢谢. 然后还是分解成两个任务:a)判环,b)找最长边. 对于这样一个无向图,强行转换成负权然后bellman-ford算法求最短是难以实现的,所以感谢没有环--我 ...

  3. selenium自动化一点记录

    UI自动化 1.webdriver的findElement方法可以查找页面某元素,通常使用方式是通过id和name进行查找 1.By ID根据id进行定位 WebElement element=dri ...

  4. 373. Partition Array by Odd and Even【LintCode java】

    Description Partition an integers array into odd number first and even number second. Example Given  ...

  5. 承压计算:模拟+double

    标题:承压计算 X星球的高科技实验室中整齐地堆放着某批珍贵金属原料. 每块金属原料的外形.尺寸完全一致,但重量不同.金属材料被严格地堆放成金字塔形. 7                         ...

  6. openstack多region介绍与实践---转

    概念介绍 所谓openstack多region,就是多套openstack共享一个keystone和horizon.每个区域一套openstack环境,可以分布在不同的地理位置,只要网络可达就行.个人 ...

  7. 十一:Centralized Cache Management in HDFS 集中缓存管理

    集中的HDFS缓存管理,该机制可以让用户缓存特定的hdfs路径,这些块缓存在堆外内存中.namenode指导datanode完成这个工作. Centralized cache management i ...

  8. [LeetCode] 53. Maximum Subarray 解题思路

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. ZOJ 3644 Kitty's Game(数论+DP)

    Description Kitty is a little cat. She is crazy about a game recently. There arenscenes in the game( ...

  10. linux下的常用技巧。

    xargs  linux下的多行合并~ [root@]# yum list installed|grep php|awk -F ' ' '{print $1}' php-channel-nrk.noa ...