SPOJ - SUBST1 D - New Distinct Substrings
D - New Distinct Substrings
题目大意:求一个字符串中不同子串的个数。
裸的后缀数组
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg using namespace std; const int N = 1e5 + ;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f; char s[N];
int sa[N], t[N], t2[N], c[N], rk[N], height[N], id[N], b[N], d[N], n, tot; void buildSa(char *s, int n, int m) {
int i, j = , k = , *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= ) {
int p = ;
for(i = n - k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(int i = ; i < n; i++) {
if(y[sa[i - ]] == y[sa[i]] && y[sa[i - ] + k] == y[sa[i] + k])
x[sa[i]] = p - ;
else x[sa[i]] = p++;
}
if(p >= n) break;
m = p;
} for(i = ; i < n; i++) rk[sa[i]] = i;
for(i = ; i < n - ; i++) {
if(k) k--;
j = sa[rk[i] - ];
while(s[i + k] == s[j + k]) k++;
height[rk[i]] = k;
}
} int main() {
int T; scanf("%d", &T);
while(scanf("%s", s) != EOF) { n = strlen(s);
buildSa(s, n + , ); LL ans = ; for(int i = ; i <= n; i++) {
ans += (n - sa[i]) - height[i];
} printf("%lld\n", ans);
}
return ;
} /*
*/
SPOJ - SUBST1 D - New Distinct Substrings的更多相关文章
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- 【spoj SUBST1】 New Distinct Substrings
http://www.spoj.com/problems/SUBST1/ (题目链接) 题意 求字符串的不相同的子串个数 Solution 后缀数组论文题. 每个子串一定是某个后缀的前缀,那么原问题等 ...
- [SPOJ]DISUBSTR:Distinct Substrings&[SPOJ]SUBST1:New Distinct Substrings
题面 Vjudge Vjudge Sol 求一个串不同子串的个数 每个子串一定是某个后缀的前缀,也就是求所有后缀不同前缀的个数 每来一个后缀\(suf(i)\)就会有,\(len-sa[i]+1\)的 ...
- SPOJ 题目705 New Distinct Substrings(后缀数组,求不同的子串个数)
SUBST1 - New Distinct Substrings no tags Given a string, we need to find the total number of its di ...
- SPOJ 694 (后缀数组) Distinct Substrings
将所有后缀按照字典序排序后,每新加进来一个后缀,它将产生n - sa[i]个前缀.这里和小罗论文里边有点不太一样. height[i]为和字典序前一个的LCP,所以还要减去,最终累计n - sa[i] ...
- Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)
Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- 后缀数组:SPOJ SUBST1 - New Distinct Substrings
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【刷题】SPOJ 705 SUBST1 - New Distinct Substrings
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
随机推荐
- 题解【luoguP1525 NOIp提高组2010 关押罪犯】
题目链接 题解 算法: 一个经典的并查集 但是需要用一点贪心的思想 做法: 先将给的冲突们按冲突值从大到小进行排序(这很显然) 然后一个一个的遍历它们 如果发现其中的一个冲突里的两个人在同一个集合里, ...
- Leetcode 001. 两数之和(扩展)
1.题目要求 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 2.解法一:暴力法(for*for,O(n*n)) ...
- git版本回退与撤销操作
场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...
- JSX 的基本语法规则
JSX 的基本语法规则:遇到 HTML 标签(以 < 开头),就用 HTML 规则解析:遇到代码块(以 { 开头),就用 JavaScript 规则解析
- php下载大文件
<?php $file = @ fopen($file_dir . $file_name,"r"); $filesize=filesize($file_dir.$file_n ...
- 关于MyBatis一些小错误,元素内容必须由格式正确的字符数据或标记组成.
今天在Mapper.xml文件写查询语句报了个奇怪的错误 Caused by: org.apache.ibatis.builder.BuilderException: Error creating d ...
- Jmeter-7-在命令行中运行Jmeter.
jmeter -n -t D:\Jmeter_result\Script_baidu.jmx -l D:\Jmeter_result\Script_baidu.txt jmeter -n -t D:\ ...
- 调戏OpenShift:一个免费能干的云平台(已失效)
一.前因后果 以前为了搞微信的公众号,在新浪sae那里申请了一个服务器,一开始还挺好的 ,有免费的云豆送,但是一直运行应用也要消费云豆,搞得云豆也所剩无几了.作为一名屌丝,日常吃土,就单纯想玩一玩微信 ...
- HTML语意化
1.什么是HTML语义化? 根据内容的结构化(内容语义化),选择合适的标签(代码语义化)便于开发者阅读.写出更优雅的代码的同时让浏览器的爬虫和机器很好地解析. 2.为什么要语义化? 为了在没有CSS ...
- js 作用域链&内存回收&变量&闭包
闭包主要涉及到js的几个其他的特性:作用域链,垃圾(内存)回收机制,函数嵌套,等等 一.作用域链:函数在定义的时候创建的,用于寻找使用到的变量的值的一个索引,而他内部的规则是,把函数自身的本地变量放在 ...