(转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html
HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。
算法流程图如下(这篇论文上的):

下面我再结合自己的程序,表述一遍吧:
1.对原图像gamma校正,img=sqrt(img);
2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率。
3.将图像每16*16(取其他也可以)个像素分到一个cell中。对于256*256的lena来说,就分成了16*16个cell了。
4.对于每个cell求其梯度方向直方图。通常取9(取其他也可以)个方向(特征),也就是每360/9=40度分到一个方向,方向大小按像素边缘强度加权。最后归一化直方图。
5.每2*2(取其他也可以)个cell合成一个block,所以这里就有(16-1)*(16-1)=225个block。
6.所以每个block中都有2*2*9个特征,一共有225个block,所以总的特征有225*36个。
当然一般HOG特征都不是对整幅图像取的,而是对图像中的一个滑动窗口取的。
lena图:

求得的225*36个特征:

matlab代码如下:

clear all; close all; clc;
img=double(imread('lena.jpg'));
imshow(img,[]);
[m n]=size(img);
img=sqrt(img); %伽马校正
%下面是求边缘
fy=[-1 0 1]; %定义竖直模板
fx=fy'; %定义水平模板
Iy=imfilter(img,fy,'replicate'); %竖直边缘
Ix=imfilter(img,fx,'replicate'); %水平边缘
Ied=sqrt(Ix.^2+Iy.^2); %边缘强度
Iphase=Iy./Ix; %边缘斜率,有些为inf,-inf,nan,其中nan需要再处理一下
%下面是求cell
step=16; %step*step个像素作为一个单元
orient=9; %方向直方图的方向个数
jiao=360/orient; %每个方向包含的角度数
Cell=cell(1,1); %所有的角度直方图,cell是可以动态增加的,所以先设了一个
ii=1;
jj=1;
for i=1:step:m %如果处理的m/step不是整数,最好是i=1:step:m-step
ii=1;
for j=1:step:n %注释同上
tmpx=Ix(i:i+step-1,j:j+step-1);
tmped=Ied(i:i+step-1,j:j+step-1);
tmped=tmped/sum(sum(tmped)); %局部边缘强度归一化
tmpphase=Iphase(i:i+step-1,j:j+step-1);
Hist=zeros(1,orient); %当前step*step像素块统计角度直方图,就是cell
for p=1:step
for q=1:step
if isnan(tmpphase(p,q))==1 %0/0会得到nan,如果像素是nan,重设为0
tmpphase(p,q)=0;
end
ang=atan(tmpphase(p,q)); %atan求的是[-90 90]度之间
ang=mod(ang*180/pi,360); %全部变正,-90变270
if tmpx(p,q)<0 %根据x方向确定真正的角度
if ang<90 %如果是第一象限
ang=ang+180; %移到第三象限
end
if ang>270 %如果是第四象限
ang=ang-180; %移到第二象限
end
end
ang=ang+0.0000001; %防止ang为0
Hist(ceil(ang/jiao))=Hist(ceil(ang/jiao))+tmped(p,q); %ceil向上取整,使用边缘强度加权
end
end
Hist=Hist/sum(Hist); %方向直方图归一化
Cell{ii,jj}=Hist; %放入Cell中
ii=ii+1; %针对Cell的y坐标循环变量
end
jj=jj+1; %针对Cell的x坐标循环变量
end
%下面是求feature,2*2个cell合成一个block,没有显式的求block
[m n]=size(Cell);
feature=cell(1,(m-1)*(n-1));
for i=1:m-1
for j=1:n-1
f=[];
f=[f Cell{i,j}(:)' Cell{i,j+1}(:)' Cell{i+1,j}(:)' Cell{i+1,j+1}(:)'];
feature{(i-1)*(n-1)+j}=f;
end
end
%到此结束,feature即为所求
%下面是为了显示而写的
l=length(feature);
f=[];
for i=1:l
f=[f;feature{i}(:)'];
end
figure
mesh(f)

(转)matlab练习程序(HOG方向梯度直方图)的更多相关文章
- 【计算机视觉】Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很 ...
- Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同 ...
- 特征描述子(feature descriptor) —— HOG(方向梯度直方图)
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方 ...
- 【翻译】HOG, Histogram of Oriented Gradients / 方向梯度直方图 介绍
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/ ...
- 方向梯度直方图(HOG)和颜色直方图的一些比較
近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对 ...
- HOG(方向梯度直方图)
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測 ...
- 【笔记】HOG (Histogram of Oriented Gradients, 方向梯度直方图)的开源实现
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor h ...
- 梯度直方图(HOG,Histogram of Gradient)
1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该 ...
- 目标检测之hog(梯度方向直方图)---hog简介0
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功 ...
随机推荐
- 相机上的P,S,A,M分别是什么单词的缩写?
程序曝光 Programmed Auto快门优先 Shutter Priority光圈优先 aperture-priority 全手动模式 Manual Mode
- arp获取
getarp.c /* getarp.c -- This simple program uses an IOCTL socket call to read an entry */ /* from th ...
- [剑指Offer] 61.序列化二叉树
题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *r ...
- [计算机网络-应用层] FTP协议
文件传输协议:FTP 如下图所示:用户通过一个FTP用户代理与FTP交互.该用户首先提供远程主机的主机名,使本地主机的FTP客户机进程建立一个到远程主机FTP服务器进程的TCP连接.然后,该用户提供用 ...
- asp.net中缓存的使用
刚学到asp.net怎么缓存,这里推荐学习一下 www.cnblogs.com/wang726zq/archive/2012/09/06/cache.html http://blog.csdn.net ...
- BZOJ4765 普通计算姬(分块+树状数组)
对节点按编号分块.设f[i][j]为修改j号点对第i块的影响,计算f[i][]时dfs一遍即可.记录每一整块的sum.修改时对每一块直接更新sum,同时用dfs序上的树状数组维护子树和.查询时累加整块 ...
- 《转》'autocomplete="off"'在Chrome中不起作用解决方案
最近项目中遇到一个令人头疼的问题,查阅各种资料,尝试各种方法,最终得以解决:哎···下面就说说这心酸的历程吧. 大家都知道autocomplete属性是表单字段中的HTML5新属性,该属性有两种状态值 ...
- Codeforces Gym 101142 G Gangsters in Central City (lca+dfs序+树状数组+set)
题意: 树的根节点为水源,编号为 1 .给定编号为 2, 3, 4, …, n 的点的父节点.已知只有叶子节点都是房子. 有 q 个操作,每个操作可以是下列两者之一: + v ,表示编号为 v 的房子 ...
- Mac下docker搭建lamp本地开发环境
1.先在Mac上下载docker:官网下载:下载地址(选择mac版本下载,可能速度较慢) DaoCloud下载:下载地址(速度较快,可能版本较低) 2.装完之后打开: 3.检查一下是否下载成功: $ ...
- 阿里云学生机——Mysql配置---教小白入门篇
首先,我的学生机默认配置为:CentOS 7.2 64位 + Tomcat 8 + Jdk8 + MySQL5.7.16 扩展:Linux 如何查看 MySQL 版本号----使用命令 mysql - ...