相关知识:(来自百度百科)

 LCA(Least Common Ancestors)

即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。

例如:

1和7的最近公共祖先为5;

1和5的最近公共祖先为5;

7和5的最近公共祖先为7;


题目:

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。

例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中。

常见解法:

1.暴力枚举(朴素算法)

遍历树,找到两个节点(A、B)的位置。

将深度较深的节点(A)向树的根部移动到和深度较浅的节点(B)同一深度。

然后两个点一起向上移动,直到重叠。

2.运用DFS序

3.倍增寻找(ST算法)

4.Tarjan算法(离线算法)

5.树链剖分


分析:

这里讨论一下Tarjan算法(因为只看懂了这个)

Tarjan算法其实是一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法。

如果把LCA看作一个图的话,就是求连接图中两个元素的最短路径

而这个算法是基于并查集(两个元素是否同一上级)和DFS(深度优先搜索)

DFS的作用是深度遍历整个树,并查集的作用是将该点和其子节点连接成一个集合:如下图每种颜色代表一个集合

个人的理解:

① 如果在上图中找2和8的最近公共祖先,从根节点1开始深度遍历,会首先得到蓝色这个集合(2在集合中)。

② 但在遍历的过程中发现蓝色集合里面没有8,那么就说明8在其他颜色的集合里面。

③ 而蓝色集合与其他颜色集合连接点为1,不用考虑8在哪个集合中,就能够断定2和8的最近公共祖先是1。


Tarjan代码实现:

/**
* 对二叉树节点的定义
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/ class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root == NULL)//若根节点为空,返回NULL
return NULL;
if(root == p || root == q)//当q为p的父节点或p为q的父节点
return root; //这里通过递归实现LCA
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q); if(left != NULL && right != NULL)
return root;
else if(left != NULL)
return left;//移到节点的左孩子
else if(right != NULL)
return right;//移到节点的右孩子
else
return NULL; }
};

利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构的更多相关文章

  1. LeetCode 235. 二叉搜索树的最近公共祖先 32

    235. 二叉搜索树的最近公共祖先 235. Lowest Common Ancestor of a Binary Search Tree 题目描述 给定一个二叉搜索树,找到该树中两个指定节点的最近公 ...

  2. Java实现 LeetCode 235 二叉搜索树的最近公共祖先

    235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个 ...

  3. 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先

    剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q ...

  4. LeetCode 235. 二叉搜索树的最近公共祖先

    235. 二叉搜索树的最近公共祖先 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先 ...

  5. Leetcode:235. 二叉搜索树的最近公共祖先

    Leetcode:235. 二叉搜索树的最近公共祖先 Leetcode:235. 二叉搜索树的最近公共祖先 Talk is cheap . Show me the code . /** * Defin ...

  6. [程序员代码面试指南]二叉树问题-在二叉树中找到两个节点的最近公共祖先、[LeetCode]235. 二叉搜索树的最近公共祖先(BST)(非递归)

    题目 题解 法一: 按照递归的思维去想: 递归终止条件 递归 返回值 1 如果p.q都不在root为根节点的子树中,返回null 2 如果p.q其中之一在root为根节点的子树中,返回该节点 3 如果 ...

  7. 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 + 二叉排序树 + 最近公共祖先

    剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 Offer_68_1 题目描述 方法一:迭代法 由于该题的二叉树属于排序二叉树,所以相对较简单. 只需要判断两个结点是否在根节点的左右子树中 ...

  8. [Swift]LeetCode235. 二叉搜索树的最近公共祖先 | Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  9. [LC]235题 二叉搜索树的最近公共祖先 (树)(递归)

    ①题目 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖先 ...

随机推荐

  1. python 3.3.2报错:No module named 'urllib2'

    ModuleNotFoundError: No module named 'urllib3' 1. ImportError: No module named 'cookielib'1 Python3中 ...

  2. CSS图片水平垂直居中

    Html: <div id="></img></div> </div> CSS: #MainContent { display:table-c ...

  3. python中json序列化的东东

    之所以写这个因为自己总是弄混了,容易弄错,记下来有事没事看看   序列化是指把变量从内存中变成可存储或传输的过程称之为序列化用(使用dump或者dumps),把变量内容从序列化的对象重新读到 内存里称 ...

  4. 第五章 绘图基础(ALTWIND)

    线上箭头表示画线的方向.WINDING模式和ALTERNATE模式都会填充三个封闭的L型区域,号码从1到3.两个更小的内部区域,号码为4和5,在ALTERNATE模式下不被填充.但是在WINDING模 ...

  5. pyenv离线安装python各版本

    1.问题描述: 可能是国内的网络原因,在线用pyenv安装python老是定住没反应 [root@zabbix ~]# pyenv install Downloading Python-.tar.xz ...

  6. nginx1.14的安装

    编译安装nginx1.14.2 #拷贝指定文件到当前目录下[root@localhost ~]# find /usr/share -iname "*.jpg" -exec cp { ...

  7. BeanFactory和ApplicationContext的简单介绍

    引言 Spring通过一个配置文件描述Bean及Bean之间的依赖关系,利用Java语音的反射功能实例化Bean并建立Bean之间的依赖关系.Spring的IoC容器在完成这些底层工作的基础上,还提供 ...

  8. Django之views

    一 URL补充 二 Views试图函数 一 URL补充 1 MTV模型 2  django建立流程(用命令版) (1)django-admin startproject projectname (2) ...

  9. 转://批量更新sequence的存储

    前言: ORACLE的序列(SEQUENCE)A SCHEMA OBJECT THAT GENERATES A SERIAL LIST OF UNIQUE NUMBERS FOR TABLE COLU ...

  10. 转://oracle 11gR2 oracle restart 单机使用asm存储 主机名发生更改处理过程

    oracle 11gR2 oracle restart 单机使用asm存储 主机名发生更改并且主机重启后处理过程: 以下为解决方案: 1. Remove Oracle Restart configur ...