题目

C   大型百货商场会员画像描绘

在零售行业中,会员价值体现在持续不断地为零售运营商带来稳定的销售额和利润,同时也为零售运营商策略的制定提供数据支持。零售行业会采取各种不同方法来吸引更多的人成为会员,并且尽可能提高会员的忠诚度。当前电商的发展使商场会员不断流失,给零售运营商带来了严重损失。此时,运营商需要有针对性地实施营销策略来加强与会员的良好关系。比如,商家针对会员采取一系列的促销活动,以此来维系会员的忠诚度。有人认为对老会员的维系成本太高,事实上,发展新会员的资金投入远比采取一定措施来维系现有会员要高。完善会员画像描绘,加强对现有会员的精细化管理,定期向其推送产品和服务,与会员建立稳定的关系是实体零售行业得以更好发展的有效途径。

附件中的数据给出了某大型百货商场会员的相关信息:附件1是会员信息数据;附件2是近几年的销售流水表;附件3是会员消费明细表;附件4是商品信息表,一般来说,商品价格越高,盈利越高;附件5是数据字典。请建立数学模型解决以下问题:

(1) 分析该商场会员的消费特征,比较会员与非会员群体的差异,并说明会员群体给商场带来的价值。

(2) 针对会员的消费情况建立能够刻画每一位会员购买力的数学模型,以便能够对每个会员的价值进行识别。

(3) 作为零售行业的重要资源,会员具有生命周期(会员从入会到退出的整个过程),会员的状态(比如活跃和非活跃)也会发生变化。试在某个时间窗口,建立会员生命周期和状态划分的数学模型,使商场管理者能够更有效地对会员进行管理。

(4) 建立数学模型计算会员生命周期中非活跃会员的激活率,即从非活跃会员转化为活跃会员的可能性,并从实际销售数据出发,确定激活率和商场促销活动之间的关系模型。

(5) 连带消费是购物中心经营的核心,如果商家将策划某次促销活动,如何根据会员的喜好和商品的连带率来策划此次促销活动?

思路

针对问题1,这个就是简单的比对分析问题了,比对的重点就是要找关键,他们的差异通过数值模型比对就可以了,没有什么技术含量。
针对问题2,这个购买力的数学模型说白了就是构建个人信息库,我们可以将购买力作为一个评价数据,而这个评价数据可以与其消费的各种商品以及其个人信息挂钩的,因此我们需要构建一个模型拟合这两者之间的关系即可,拟合模型可以选用多项式拟合算法,回归分析等解决,但用这类算法虽然简单易行,缺点是谁都会用,基本不可能拿奖,所以我们势必必要提升模型档次,用于构建自变量与因变量之间关系的高端模型主要是神经网络算法,BP是首选,但你选大家也选,所以需要加强版神经网络,例如LM算法、自适应梯度修正等进行深度优化后的网络。需要再加强版可以选用深度学习算法来拟合网络,如卷积神经网络等。
针对问题3,这个生命周期和状态主要从会员的购买力方面进行研究,我们可以通过会员唯一卡号和商品销售信息进行配准,并将消费商品的时间进行记录(这个可能要编程实现,要不难度太大),这样就能看到会员在某个时间周期内的消费商品类型及价格排列,然后将这个时间与价格进行一致性分析后构建两者之间的关系,构建回归模型进行拟合即可得到生命周期和状态划分。
针对问题4,这个主要是在生命周期内,我们需要查到某些会员存在的异常数据波动,这个异常数据是有先兆的,比如在某个会员长期低迷的情况下,购买了若干类型的商品,或者因为某种原因增强了购买力,从而转变成了活跃会员,因此我们首先需要检测出这些遗传数据出现的位置,这个可以选用小波分析算法来做,确定这个位置后,再根据她后面的活跃情况(可以先分级考虑)确定这种异常数据与活跃分级之间的关系,也是拟合一下就可以了,这个活跃分级就是活跃概率。然后再返回去寻找是不是和上传促销活动有关系即可。
针对问题5,评价类问题,用遗传算法即可。

2018年高教社杯全国大学生数学建模竞赛C题解题思路的更多相关文章

  1. 2018年高教社杯全国大学生数学建模竞赛D题解题思路

    题目 D题   汽车总装线的配置问题 一.问题背景 某汽车公司生产多种型号的汽车,每种型号由品牌.配置.动力.驱动.颜色5种属性确定.品牌分为A1和A2两种,配置分为B1.B2.B3.B4.B5和B6 ...

  2. 2018年高教社杯全国大学生数学建模竞赛B题解题思路

    题目 先贴下B题的题目吧 问题B    智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC).1辆轨道式自动引 ...

  3. 2018年高教社杯全国大学生数学建模竞赛A题解题思路

    题目 先贴一下A的题目吧 A题   高温作业专用服装设计 在高温环境下工作时,人们需要穿着专用服装以避免灼伤.专用服装通常由三层织物材料构成,记为I.II.III层,其中I层与外界环境接触,III层与 ...

  4. 2019全国大学生数学建模竞赛(高教社杯)A题题解

    文件下载:https://www.lanzous.com/i6x5iif 问题一 整体过程: 0x01. 首先,需要确定燃油进入和喷出的间歇性工作过程的时间关系.考虑使用决策变量对一段时间内燃油进入和 ...

  5. 2019美国大学生数学建模竞赛B题(思路)

    建模比赛已经过去三天了,但留校的十多天里,自己的收获与感受依然长存于心.下面的大致流程,很多并没有细化,下面很多情况都是在假设下进行的,比如假设飞机能够来回运送药品,运货无人机就只运货,在最大视距下侦 ...

  6. BITED数学建模七日谈之一:参加全国大学生数学建模比赛前你需要积累哪些

    大家好,我是数学中国的版主magic2728,非常高兴能够借助数学中国这个平台分享一些自己的经验,帮助大家在国赛的最后备战中能够最后冲刺提高.分享一共分为七个部分,分七天写给大家,下面是第一个部分:参 ...

  7. 2018年中国研究生数学建模竞赛C题 二等奖 赛题论文

    2018年中国研究生数学建模竞赛C题 对恐怖袭击事件记录数据的量化分析 恐怖袭击是指极端分子或组织人为制造的.针对但不仅限于平民及民用设施的.不符合国际道义的攻击行为,它不仅具有极大的杀伤性与破坏力, ...

  8. 2015全国大学生数学建模B题浅谈

    题目请自主上网获取. 分析下思路.第一问,不同时空的出租车的“供求匹配”程度. 也就是说要选取的数据要有时间和地理两个维度.实体对象是出租车.关键的问题就是地点怎么选? 选择的城市具备如下经济较发达, ...

  9. 2017年研究生数学建模竞赛-E题 MATLAB 作战区域道路示意图

    MATLAB 画区域作战图 clear load('output_path1.mat') k = 1:130; gplot(edge(k,k),loc(k,:),'c-') title('作战区域道路 ...

随机推荐

  1. 高通非adsp 架构下的sensor的bug调试

    高通 sensor 从native到HAL 高通HAL层之Sensor HAL 高通HAL层之bmp18x.cpp 问题现象: 当休眠后,再次打开preesure sensor的时候,会出现隔一段时候 ...

  2. SQL Server 2017数据库服务和SSMS图形化工具的的安装

    第一章 SQL数据库服务的安装 1. 首先要加载sql2017数据库镜像,可以用虚拟光驱或是刻录光盘装载.执行setup.exe. 双击.exe文件 双击.exe文件 2. 选择安装-->全新s ...

  3. Spring MVC 的工作原理

    引自:https://www.cnblogs.com/xiaoxi/p/6164383.html SpringMVC的工作原理图: SpringMVC流程 1.  用户发送请求至前端控制器Dispat ...

  4. 使用navicat 连接mysql出现1251错误

    最近需要用MYSQL,使用navicat 连接时总出现1251错误,在网上查了一些别人的方法并试过 以下方法是正确的. 方法来自:https://blog.csdn.net/XDMFC/article ...

  5. JVM虚拟机查找类文件的顺序

    JVM查找类文件的顺序: 在doc下使用set classpath=xxx, 如果没有配置classpath环境变量,JVM只在当前目录下查找要运行的类文件. 如果配置了classpath环境,JVM ...

  6. Python3编写网络爬虫11-数据存储方式四-关系型数据库存储

    关系型数据库存储 关系型数据库是基于关系模型的数据库,而关系模型是通过二维表保存的,所以它的存储方式就是行列组成的表.每一列是一个字段,每一行是一条记录.表可以看作某个实体的集合,而实体之间存在联系, ...

  7. Python 使用 xlwings 往 excel中写入一列数据的两种方法

    1.准备一个二维列表,然后再range后面不指定任何选项,可以输出该二维列表中数据在一列中显示,如下代码: # -*- coding:utf-8 -*- import xlwings as xw li ...

  8. vue实例详解

    Vue实例的构造函数 每个 Vue.js 应用都是通过构造函数 Vue 创建一个 Vue 的根实例 启动的 虽然没有完全遵循 MVVM 模式, Vue 的设计无疑受到了它的启发.因此在文档中经常会使用 ...

  9. CF 932E Team Work

    原题题面 题目大意:求\(\sum\limits_{i=0}^{n}C_{n}^{i}i^{k}\). 我们根据套路\(n^{k}=\sum\limits_{i=0}^{k}C_{n}^{i}i!S_ ...

  10. 【HDU4507】恨7不成妻

    Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: 2+1+4=7 ...