传送门


发现它的本质是求一个费用最小的路径覆盖

最小路径覆盖是网络流23题中的一个比较典型的模型

所以考虑相似的建边

因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\(A_i,B_i\)两个点,\(S->B_i , A_i -> T\),原图中的边\((i,j)\)变为\(B_i -> A_j\),费用不变。

接下来我们需要考虑费用的设置

首先\(S->B_i\)的边的费用显然是通过空间跳跃到达这个点需要的时间\(a_i\)。

但有一个问题:在上面以最小路径覆盖问题为模板建立出的模型中,点\(B_i\)的出度流对应的实际上只是一条路径上的一条边\((i,j)\)而并非一整条路径。这意味着一条路径上除了终点以外所有点的\(a_i\)在费用流中都被加了进来。

考虑怎么减掉这个额外出现的空间跳跃费用。不难想到将\(A_i -> T\)边的费用设置为\(-a_i\)。这样非起点非终点的所有点\(a_i\)的贡献就会变为\(0\)。但是在这种情况下终点\(a_i\)的贡献却又是\(-a_i\)。

发现问题在于\(S->B_i\)边没有流。那么加上\(B_i -> T\)、流量1费用0的边,这样\(S->B_i\)就会有\(1\)的流,终点的空间跳跃时间就会变为\(0\),就能保证路径上所有点空间跳跃时间是正确的了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#define INF 0x3f3f3f3f
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c) && c != EOF){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    if(c == EOF)
        exit(0);
    while(isdigit(c)){
        a = (a << 3) + (a << 1) + (c ^ '0');
        c = getchar();
    }
    return f ? -a : a;
}

const int MAXN = 2e4 + 3 , MAXM = 1e5 + 3;
struct Edge{
    int end , upEd , f , c;
}Ed[MAXM];
int head[MAXN] , cur[MAXN] , dep[MAXN] , dis[MAXN] , pre[MAXN] , flo[MAXN];
int N , M , S , T , cntEd = 1;
bool vis[MAXN];
queue < int > q;

inline void addEd(int a , int b , int c , int d = 0){
    Ed[++cntEd].end = b;
    Ed[cntEd].upEd = head[a];
    Ed[cntEd].f = c;
    Ed[cntEd].c = d;
    head[a] = cntEd;
}

inline bool bfs(){
    while(!q.empty())
        q.pop();
    q.push(S);
    memset(dep , 0 , sizeof(dep));
    dep[S] = 1;
    while(!q.empty()){
        int t = q.front();
        q.pop();
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(Ed[i].f && !dep[Ed[i].end]){
                dep[Ed[i].end] = dep[t] + 1;
                if(Ed[i].end == T){
                    memcpy(cur , head , sizeof(head));
                    return 1;
                }
                q.push(Ed[i].end);
            }
    }
    return 0;
}

inline int dfs(int x , int mF){
    if(x == T)
        return mF;
    int sum = 0;
    for(int &i = cur[x] ; i ; i = Ed[i].upEd)
        if(Ed[i].f && dep[Ed[i].end] == dep[x] + 1){
            int t = dfs(Ed[i].end , min(mF - sum , Ed[i].f));
            if(t){
                Ed[i].f -= t;
                Ed[i ^ 1].f += t;
                sum += t;
                if(sum == mF)
                    break;
            }
        }
    return sum;
}

int Dinic(){
    int ans = 0;
    while(bfs())
        ans += dfs(S , INF);
    return ans;
}

inline bool SPFA(){
    memset(dis , 0x3f , sizeof(dis));
    dis[S] = 0;
    while(!q.empty())
        q.pop();
    q.push(S);
    flo[S] = INF;
    while(!q.empty()){
        int t = q.front();
        q.pop();
        vis[t] = 0;
        for(int i = head[t] ; i ; i = Ed[i].upEd)
            if(Ed[i].f && dis[Ed[i].end] > dis[t] + Ed[i].c){
                dis[Ed[i].end] = dis[t] + Ed[i].c;
                flo[Ed[i].end] = min(Ed[i].f , flo[t]);
                pre[Ed[i].end] = i;
                if(!vis[Ed[i].end]){
                    vis[Ed[i].end] = 1;
                    q.push(Ed[i].end);
                }
            }
    }
    return dis[T] != dis[T + 1];
}

int EK(){
    int ans = 0;
    while(SPFA()){
        int cur = T , sum = 0;
        while(cur != S){
            sum += Ed[pre[cur]].c;
            Ed[pre[cur]].f -= flo[T];
            Ed[pre[cur] ^ 1].f += flo[T];
            cur = Ed[pre[cur] ^ 1].end;
        }
        ans += sum * flo[T];
    }
    return ans;
}

bool in[MAXN];
int nxt[MAXN];

int main(){
#ifndef ONLINE_JUDGE
    freopen("in" , "r" , stdin);
    //freopen("out" , "w" , stdout);
#endif
    N = read();
    M = read();
    T = 2 * N + 2;
    for(int i = 1 ; i <= N ; ++i){
        int a = read();
        addEd(S , i + N , 1 , a);
        addEd(i + N , S , 0 , -a);
        addEd(i , T , 1 , -a);
        addEd(T , i , 0 , a);
        addEd(i + N , T - 1 , 1);
        addEd(T - 1 , i + N , 0);
    }
    addEd(T - 1 , T , INF);
    addEd(T , T - 1 , 0);
    for(int i = 1 ; i <= M ; ++i){
        int a = read() , b = read() , c = read();
        if(a > b)
            swap(a , b);
        addEd(a + N , b , 1 , c);
        addEd(b , a + N , 0 , -c);
    }
    cout << EK();
    return 0;
}

Luogu2469 SDOI2010 星际竞速 费用流的更多相关文章

  1. BZOJ 1927: [Sdoi2010]星际竞速 费用流

    1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ 1927: [Sdoi2010]星际竞速(费用流)

    传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...

  3. [SDOI2010]星际竞速——费用流

    类似于最短路的网络流,而且还要保证每个点经过一次,拆点就比较方便了. 连边怎么连?要保证最大流是n(每个点经过一次)还要能从直接跳转 将每个点拆点.源点向每个点的入点连一条容量为1费用为0的边.源点向 ...

  4. BZOJ 1927 星际竞速(费用流)

    考虑费用流,题目要求走n个点都走完且恰好一次,显然流量的限制为n. 建立源点s和汇点t,并把每个星球拆成两个点i和i',分别表示已到达该点和经过该点. 对于能力爆发,建边(s,i',1,w). 对应高 ...

  5. bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Statu ...

  6. BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)

    拆点,费用流... ----------------------------------------------------------------------------- #include< ...

  7. BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]

    1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...

  8. BZOJ1927 [Sdoi2010]星际竞速 【费用流】

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2582  Solved: 1601 [Submit][St ...

  9. P2469 [SDOI2010]星际竞速(费用流)

    P2469 [SDOI2010]星际竞速 最小路径覆盖问题 每个星球必须恰好去一次,而每次高速航行都是从一个星球到另一个星球. 那么高速航行的起点可以保证被去过 高速航行和空间跳跃可以是互相独立的 将 ...

随机推荐

  1. 【图解】Web前端实现类似Excel的电子表格

    本文将通过图解的方式,使用纯前端表格控件 SpreadJS 来一步一步实现在线的电子表格产品(例如可构建Office 365 Excel产品.Google的在线SpreadSheet). 工具简介: ...

  2. ViewPager防止Fragment销毁以及取消Fragment的预加载

    存在的问题 1. 默认情况下,ViewPager会根据setOffscreenPageLimit()方法设置的大小,自动预加载2. 还是根据setOffscreenPageLimit()方法设置的大小 ...

  3. vue axios 与 FormData 结合 提交文件 上传文件

    ---再利用Vue.axios.FormData做上传文件时,遇到一个问题,后台虽然接收到请求,但是将文件类型识别成了字符串,所以,web端一直报500,结果是自己大意了. 1.因为使用了new  F ...

  4. go 实现简单的加权分配

    最近一段时间接手了一个golang编写的模块,从python转到golang这种静态语言还是有些不适应的,接手模块后的第一个需求是实现一个加权分配的方法. 简单来说数据库中存有3个链接,3个链接的权重 ...

  5. [20180612]删除bootstrap$记录无法启动.txt

    [20180612]删除bootstrap$记录无法启动.txt --//前几天看链接http://www.xifenfei.com/2018/05/willfully-delete-bootstra ...

  6. JavaScript高级特性-实现继承的七种方式

    声明和约定: 在C++和Java中,我们可以通过关键字class来声明一个类,在JavaScript中没有这个关键字,但我们知道可以通过new一个function创建对象,这个function类似C+ ...

  7. Sudoku(第二次作业)

    这里是github 工具清单: 编程语言:C++ 编程IDE:XCode 效能分析工具:XCode 源代码管理平台:Github PSP2.1 PSP2.1 Personal Software Pro ...

  8. WPFのImage控件souce引入的方法总结

    1.后台代码相对路径添加(若为绝对路径,换UriKind的属性即可) BitmapImage testBitmapImage = new BitmapImage(new Uri(@"\bin ...

  9. hdu3400(三分套三分)

    题意:平面上两条线段 AB,CD. A到B的速度v1,C到D的速度v2,其它地方的速度V3. 求A到D的最短时间. 解法:三分嵌套三分.首先假设AB上的点确定后.确定CD的点的确定应该是符合三分性质的 ...

  10. Codeforces Round #245 (Div. 2)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/yew1eb/article/details/25609981 A Points and Segmen ...