# -*- coding: UTF-8 -*-

import numpy as np
import math # 定义基础变量
learning_rate = 0.1
n_iterations = 10000
m = 100 x = 2 * np.random.rand(m, 1) # 生成一组服从0~1均匀分布的随机样本,此处表示生成100行一列的二维数组,下同
y = 4 + 3 * x + np.random.randn(m, 1) # 正态分布
x_b = np.c_[np.ones((m, 1)), x] # np.((100, 1)):表示生成100行1列的矩阵,内部填充为1 # 设置阈值
threshold = 0.15
# 1,初始化theta,w0...wn
theta = np.random.randn(2, 1)
count = 0
before_value = 1
# 4,设置阈值,之间设置超参数,迭代次数,迭代次数到了或者满足阈值,我们就认为收敛了
for iteration in range(n_iterations):
count += 1
# 2,接着求梯度gradient
gradients = 1/m * x_b.T.dot(x_b.dot(theta)-y) # 求平均梯度
# 3,应用公式调整theta值,theta_t + 1 = theta_t - grad * learning_rate
theta = theta - learning_rate * gradients
# 判断是否满足阈值
mid = math.sqrt(math.pow((theta[0][0] - 4), 2) + math.pow((theta[1][0] - 3), 2))
if mid <= threshold:
print('总共执行{}次迭代,可知迭代次数设置过大,建议适当减小!'.format(count))
break
# 若与上一次的中间结果比较差值过小也同样结束循环
err = math.fabs(mid - before_value)
if err < 0.001:
if before_value > threshold:
print('多次迭代都不能满足阈值,请修改阈值或重新处理数据!')
break
else:
print('总共执行{}次迭代,可知迭代次数设置过大,建议适当减小!'.format(count))
break
# 暂时保存上一次的中间结果
before_value = mid
print('结果:\n x is : {}\n y is : {}\n 误差 : {}'.format(theta[0][0], theta[1][0], before_value)) 结果:


Python实现批量梯度下降算法的更多相关文章

  1. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  2. 【转】梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  3. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  4. 梯度下降算法对比(批量下降/随机下降/mini-batch)

    大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度 ...

  5. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  6. 三种梯度下降算法的区别(BGD, SGD, MBGD)

    前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...

  7. 梯度下降算法实现原理(Gradient Descent)

    概述   梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很 ...

  8. 线性回归和批量梯度下降法python

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib. ...

  9. 【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值

    [Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方), ...

随机推荐

  1. OC学习5——类和对象

    1.OC是在C语言基础上进行扩展得到的一门面向对象的程序设计语言,它也提供了定义类.成员变量和方法的基本功能.类可以被认为是一种自定义的数据类型,使用它可以定义变量,所有使用类定义的变量都是指针类型的 ...

  2. [视频]K8飞刀 shellcode loader演示教程

    [视频]K8飞刀 shellcode loader演示教程 https://pan.baidu.com/s/1eQ77lPw

  3. Python 解析har 文件将域名分类导出

    前言 作为程序员平时主要是使用 shadowsocks 作为代理工具的.shadowsocks 有个很明显的优点儿就是可以设置白名单和黑名单.白名单是会走shadowsocks的自动代理模式. 遇到的 ...

  4. CSS 基础:HTML 标记与文档结构(1)<思维导图>

    这段时间利用一下间隙时间学习了CSS的基础知识,主要目的是加深对CSS的理解,虽然个人主要工作基本都是后台开发,但是个人觉得系统学习一下CSS的基础还是很有必要的.下面我学习CSS时做的思维导图(全屏 ...

  5. Spring Cloud Ribbon——客户端负载均衡

    一.负载均衡负载均衡(Load Balance): 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用性.其意思 ...

  6. jfinal定时任务插件jfinal-quartz

    这个定时任务插件精确的时间可以到秒,使用方面跟jfinal-scheduler插件的使用方式差不多 Dreampie/jfinal-quartz https://github.com/Dreampie ...

  7. linux下修改时间和时区

    一.修改linux的时间在root用户下,使用date指令:date -s1.只修改日期,不修改时间,输入: date -s -- 2.只修改时间,输入: date -s :: 3.同时修改日期时间, ...

  8. Configure Many-to-Many relationship:

    Configure Many-to-Many relationship: Here, we will learn how to configure Many-to-Many relationship ...

  9. 一张图读懂PBN飞越转弯衔接TF/CF航段计算

    在PBN旁切转弯的基础上,再来看飞越转弯接TF(或CF)航段,保护区结构上有些相似,只是转弯拐角处的保护区边界有“简化”,其余部分是相近的. FlyOver接TF段的标称航迹有一个飞越之后转弯切入航迹 ...

  10. [SPOJ22343] Norma

    Description 现在有一个长度为\(N(N\leq 500000)\)的序列,定义区间\([l,r]\)的价值为\([l,r]\)的最小值乘上\([l,r]\)的最大值乘上\([l,r]\)的 ...