预处理共轭梯度算法(Preconditioned Conjugate Gradients Method)

给出百度百科上的解释:

预处理共轭梯度法

预处理共轭梯度法是。不必预先估计参数等特点。

共轭梯度法近年来在求解大型稀疏方程组中取得了较好的成效。理论上普通的共扼梯度法对于对称超正定方程,只要迭代步数达到方程的阶数就可以得到精确解,但实际上当系数矩阵的条件数(最大最小特征值之比)很大时,普通的共轭梯度法收敛速度很慢。预处理共轭梯度法对系数矩阵作预处理,以加速迭代收敛速度。

这个预处理共轭梯度算法,适用的环境是“正定的大型稀疏矩阵”,并且系数矩阵的条件数(最大最小特征值之比)很大的情况。

一般在机器学习中,我目前接触的问题中其实并不太会用到这个预处理共轭梯度算法,标准的共轭梯度算法就足以处理大多数的问题了。

共轭梯度法,在之前的博客中已经多次介绍并给出了对应的计算代码,这里就不具体介绍了,这里只讲一下这个预处理。

共轭梯度法,就是求解方程:Ax=b

其中,A矩阵为正定矩阵。

而预处理共轭梯度法,则是对矩阵A进行一个预处理,因为如果A是一个比较大的稀疏矩阵,并且A的系数矩阵的条件数(最大最小特征值之比)很大,那么即使使用共轭梯度法也需要较长的运算时间,因此可以在这种情况下,可以通过对A矩阵进行一个预处理得到等价的B矩阵,即Bx=b,这里的x和Ax=b中的x相同。

给出百度文库上的资料:

预处理共轭梯度法:

PS. 预处理方法有对角线预处理,不完全Cholesky分解预处理等。其目标就是把矩阵转换为矩阵B,并保证Ax=b,Bx=b,并且两者的x相同。这个预处理共轭梯度法更多的是用在物理学领域,在信息学中的应用还是比较有限的,因此只需要做到了解即可,不用强求掌握。

本文并没有找到具体的“预处理共轭梯度”的代码,但是给出了下面相关的资料,所需要者可以根据下面的资料执行实现这个预处理的步骤:


附录:

共轭梯度法,代码:

def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10):
"""
Demmel p 312
"""
p = b.copy()
r = b.copy()
x = np.zeros_like(b)
rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g"
titlestr = "%10s %10s %10s"
if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters):
if callback is not None:
callback(x)
if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x)))
z = f_Ax(p)
v = rdotr / p.dot(z)
x += v * p
r -= v * z
newrdotr = r.dot(r)
mu = newrdotr / rdotr
p = r + mu * p rdotr = newrdotr
if rdotr < residual_tol:
break if callback is not None:
callback(x)
if verbose: print(fmtstr % (i + 1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631
return x

预处理共轭梯度算法(Preconditioned Conjugate Gradients Method)的更多相关文章

  1. 机器学习: 共轭梯度算法(PCG)

    今天介绍数值计算和优化方法中非常有效的一种数值解法,共轭梯度法.我们知道,在解大型线性方程组的时候,很少会有一步到位的精确解析解,一般都需要通过迭代来进行逼近,而 PCG 就是这样一种迭代逼近算法. ...

  2. 共轭梯度算法求最小值-scipy

    # coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a ...

  3. Mahout 系列之----共轭梯度

    无预处理共轭梯度 要求解线性方程组 ,稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 预处理共轭梯度 预处理通常被用来加速迭代方法的收敛.要使用预 ...

  4. 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换

    一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...

  5. 近端梯度算法(Proximal Gradient Descent)

    L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x ...

  6. 临近梯度下降算法(Proximal Gradient Method)的推导以及优势

    邻近梯度下降法 对于无约束凸优化问题,当目标函数可微时,可以采用梯度下降法求解:当目标函数不可微时,可以采用次梯度下降法求解:当目标函数中同时包含可微项与不可微项时,常采用邻近梯度下降法求解.上述三种 ...

  7. Mahout系列之----共轭梯度预处理

    对于大型矩阵,预处理是很重要的.常用的预处理方法有: (1) 雅克比预处理 (2)块状雅克比预处理 (3)半LU 分解 (4)超松弛法

  8. 几句话总结一个算法之Policy Gradients

    强化学习与监督学习的区别在于,监督学习的每条样本都有一个独立的label,而强化学习的奖励(label)是有延后性,往往需要等这个回合结束才知道输赢 Policy Gradients(PG)计算某个状 ...

  9. cuda并行编程之求解ConjugateGradient(共轭梯度迭代)丢失dll解决方式

    在进行图像处理过程中,我们常常会用到梯度迭代求解大型线性方程组.今天在用cuda对神秘矩阵进行求解的时候.出现了缺少dll的情况: 报错例如以下图: watermark/2/text/aHR0cDov ...

  10. 蒙特卡罗算法(Monte Carlo method)

    蒙特卡罗方法概述 蒙特卡罗方法又称统计模拟法.随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.将所求解的问题同一 ...

随机推荐

  1. Spring扩展——BeanFactory和FactoryBean

    BeanFactory和FactoryBean BeanFactory和FactoryBean长得很相似,也很容易让我们产生误解,特别是对于初学者而言,搞懂他俩关系非常有必要,因为这两个接口,是Spr ...

  2. logback日志格式模板,基于TraceId搜索完整的请求链路日志

    logback日志格式模板,基于TraceId搜索完整的请求链路日志 日志打印格式:(可以基于TraceId:4d484c2a110eae9d来搜索完整的请求链路日志2023-08-28 15:06: ...

  3. Mybatis、Mybatis Generator、Mybatis-Plus、Mybatis Plus Generator

    1.介绍 Mybatis Mybatis 是操作数据库的框架:提供一种Mapper类,支持用Java代码对数据库进行增删改查. 缺点:需要先在xml中写好SQL语句: Mybatis Generato ...

  4. Shell依次输出1,2,3...

    个人觉得,Shell没有其他语言方便,同样是脚本语言,我更倾向于Python. Shell怎么输出1,2,3,4类似的递增数列呢? #!/bin/bash i=0 while [ $i -le 100 ...

  5. NXP i.MX 6ULL工业核心板硬件说明书( ARM Cortex-A7,主频792MHz)

    1          硬件资源 创龙科技SOM-TLIMX6U是一款基于NXP i.MX 6ULL的ARM Cortex-A7高性能低功耗处理器设计的低成本工业级核心板,主频792MHz,通过邮票孔连 ...

  6. Redis 注册成windows 服务并开机自启动

    进入安装目录 输入命令redis-server --service-install redis.windows.conf   输入启动命令即可 redis-server --service-start ...

  7. 牛客小白月赛97 A-D题解

    AAAAAAAAAAAAAAAAAAAAA -----------------------------题解------------------------------------------- 统计数 ...

  8. MerkleTree in BTC

    Merkle 树是一种用于高效且安全地验证大数据结构完整性和一致性的哈希树.它在比特币网络中起到至关重要的作用.Merkle 树是一种二叉树结构,其中每个叶子节点包含数据块的哈希值,每个非叶子节点包含 ...

  9. 解决方案 | Chrome/Edge 总是自动修改我的pdf默认打开方式

    1.问题描述 最近我的pdf文件总是被chrome打开(如图1),而且点击属性,更改别的pdf阅读器也不管用(如图2),此时的chrome就像个流氓软件一样. 图1 被chrome劫持 图2 点击属性 ...

  10. 解读MySQL 8.0数据字典缓存管理机制

    背景介绍 MySQL的数据字典(Data Dictionary,简称DD),用于存储数据库的元数据信息,它在8.0版本中被重新设计和实现,通过将所有DD数据唯一地持久化到InnoDB存储引擎的DD t ...