\(Meaning\)

\(Solution\)

这道题我来讲一个不一样的解法:\(dp\)

在写 \(dp\) 之前,我们需要明确以下几个东西:状态的表示,状态转移方程,边界条件和答案的表示。

状态的表示

\(dp[i]\) 表示到达第 \(i\) 个站点所需要的最少钱数, \(w[i]\) 表示在使用最少钱数到达第 \(i\) 个站点时多余的路程。

状态转移方程

\[
dp[i]=dp[i-1]+\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil\times pre\_min(i-1)

\]

\[
w[i]=\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil-v[i-1]+w[i-1]

\]

其中 \(pre\_min(i)\) 表示前 \(i\) 个站点中最小的油价。

边界条件

\[
dp[i]=0,w[i]=0

\]

答案的表示

\[
dp[n]

\]

问题

在状态转移方程中,怎样在 \(O(1)\) 的时间复杂度下完成 \(pre\_min\) 函数呢?

这就涉及到了一个算法:

\(ST\) 表

在算法和数据结构中,ST表(Sparse Table)是一种用于解决区间查询问题的数据结构。它可以有效地回答各种形式的查询,例如最小值、最大值、区间和等。

简介

ST表的主要思想是通过预处理来加速区间查询。它使用倍增 DP 的思想将一个数组分割成多个子区间,并在每个子区间上计算出某种操作的结果。然后,根据这些预先计算好的结果,我们可以根据需要合并区间来回答各种查询。

具体的实现过程如下:

  1. 初始化ST表,ST表是一个二维数组。
  2. 将输入的原始数组填充到ST表的第一行。
  3. 使用递推关系填充ST表的其他行,直到得到完整的ST表。
  4. 根据查询的起始位置和区间长度,在ST表中找到对应区间的值,结合适当的操作得出最终结果。

查询操作

对于任何查询操作,我们可以使用以下步骤来回答:

  1. 计算出查询区间的长度len。

  2. 找到大于等于len的最大值j,使得2^j <= len。

  3. 使用预处理的结果和递推关系,在ST表中找到对应的值,并结合适当的操作得到查询结果。

这种方法的时间复杂度为O(1),因为我们只需进行几次常数级别的操作即可回答查询。

应用场景

ST表在解决各种区间查询问题时非常有用。以下是一些常见的应用场景:

  • 查询最小值/最大值:通过选择适当的查询操作,在O(1)的时间复杂度内回答每个查询。
  • 区间和查询:可以通过使用累积和来实现区间和查询。
  • 区间gcd查询:可以通过预处理和递推关系计算区间内的最大公约数。

总结

ST表是一种高效解决区间查询问题的数据结构。通过预先计算和递推关系,我们可以在O(1)的时间复杂度内回答各种形式的查询。它的实现相对简单且灵活,适用于多种应用场景。

模板

初始化(时间复杂度 \(O(\log_2n)\) )

for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}

查询(时间复杂度 \(O(1)\) )

l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);

解决问题

有了ST表,我们就可以在O(1)的时间复杂度中查询最值了,那我们程序的最终问题:TLE也解决了。程序整体时间复杂度为O(n),可以通过此题。

AC代码如下。

\(Accept\ Code\)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+5;
ll v[N],a[N],w[N],dp[N],st[N][20];
ll n,d,l,r,len,pm;
int main() {
cin>>n>>d;
for(int i=1;i<n;i++) {
cin>>v[i];
}
for(int i=1;i<=n;i++) {
cin>>a[i];
}
for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
for(int i=2;i<=n;i++) {
l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);
dp[i]=dp[i-1]+ceil(1.0*(v[i-1]-w[i-1])/d)*pm;
w[i]=ceil(1.0*(v[i-1]-w[i-1])/d)*d-(v[i-1]-w[i-1]);
}
cout<<dp[n];
return 0;
}

【luogu题解】P9749 [CSP-J 2023] 公路的更多相关文章

  1. luogu题解P2312解方程--暴力模+秦九韶

    题目链接 https://www.luogu.org/problemnew/show/P2312 分析 这道题很毒啊,这么大的数. 但是如果多项式\(\sum_{i=0}^N a[i]*X^i=0\) ...

  2. CSP J/S 初赛总结

    CSP J/S 初赛总结 2021/9/19 19:29 用官方答案估计 J 涂卡的时候唯一的一支 2B 铅笔坏了,只能用笔芯一个个涂 选择 \(-6\ pts\) 判断 \(-3\ pts\) 回答 ...

  3. 2019 CSP J/S第2轮 视频与题解

    CSP入门组和提高组第二轮题解 转自网络

  4. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  5. luogu题解P1967货车运输--树链剖分

    题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...

  6. luogu题解 P3763 【[TJOI2017]DNA】

    题目链接: https://www.luogu.org/problemnew/show/P3763 思路: 首先我们要用到Rabin-Karp哈希,其实就是这个: 若\(w_{str}\)=(\(a_ ...

  7. luogu题解 P3629 【[APIO2010]巡逻】树的直径变式

    题目链接: https://www.luogu.org/problemnew/show/P3629 分析 最近被众多dalao暴虐,这道题傻逼地调了两天才知道错哪 不过这题比较良心给你一个容易发现性质 ...

  8. luogu题解P4198楼房重建--线段树神操作

    题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\( ...

  9. luogu题解P2502[HAOI2006]旅行--最小生成树变式

    题目链接 https://www.luogu.org/problemnew/show/P2502 分析 一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE 这时我就有个想 ...

  10. luogu题解P1032字串变换--BFS+STL:string骚操作

    题目链接 https://www.luogu.org/problemnew/show/P1032 分析 这题本来很裸的一个BFS,发现其中的字符串操作好烦啊.然后就翻大佬题解发现用STL中的strin ...

随机推荐

  1. JSONP前端流程

    JSONP前端流程 JSONP总体思路 后端先给前端一个接口文档. 如https://www.baidu.com/sugrec?prod=pc&wd=用户输入的文字&cb=后端要调用的 ...

  2. 规范代码编写风格就用 eslint 和 prettier

    eslint 可以用于规范我们的编码,使得项目中的代码风格一致,更利于阅读和维护,而 prettier 可以在当我们代码不符合 eslint 规范是进行部分自动修复. eslint 通过 npm in ...

  3. 利用选项卡提高Visual Studio 2022开发效率

    设计器作为软件开发的必要工具,其效率的提高显得尤为重要.Visual Studio 2022作为一款功能强大的设计器,通过选项卡提高了工作效率,让开发者在使用过程中更加便捷. 在Visual Stud ...

  4. 论文解读(BSFDA)《Black-box Source-free Domain Adaptation via Two-stage Knowledge Distillation》

    Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ] 论文信息 论文标题:Black-box Source-free Domain Adaptation via Two-stage ...

  5. C++ LibCurl 库的使用方法

    LibCurl是一个开源的免费的多协议数据传输开源库,该框架具备跨平台性,开源免费,并提供了包括HTTP.FTP.SMTP.POP3等协议的功能,使用libcurl可以方便地进行网络数据传输操作,如发 ...

  6. 文心一言 VS 讯飞星火 VS chatgpt (84)-- 算法导论8.2 1题

    一.用go语言,参照图8-2 的方法,说明 COUNTING-SORT 在数组 A=(6,0,2,0,1,3,4,6,1,3,2)上的操作过程. 文心一言: Counting Sort 是一种非比较型 ...

  7. RK3568开发笔记(六):开发板烧写ubuntu固件(支持mipi屏镜像+支持hdmi屏镜像)

    前言   编译了uboot,kernel,buildroot后,可以单独输入固件,也可以整体打包成rootfs进行一次性输入,rootfs直接更新升级这个方式目前也是常用的.   烧写器软件:RKDe ...

  8. 使用Springboot+SpringCloud+Seata1.3.0+Nacos1.2.1进行全局事务管理

    一.官方文档网址 http://seata.io/zh-cn/docs/overview/what-is-seata.html Seata1.3.0开发组提供的开发文档 二.常见问题 2.1:网址: ...

  9. Python脚本批量造数据、跑定时任务协助测试

    批量造数据 连接Mysql的信息 1 import pymysql 2 # 数据库连接信息 3 # 多个库要有多个conn 4 conn = pymysql.connect( 5 host=" ...

  10. 2023年了,复习了一下spring boot配置使用mongodb

    前言 MongoDB是一个基于分布式文件存储的开源数据库系统,使用C++语言编写.它是一个介于关系数据库和非关系数据库之间的产品,具有类似关系数据库的功能,但又有一些非关系数据库的特点.MongoDB ...