【luogu题解】P9749 [CSP-J 2023] 公路
\(Meaning\)

\(Solution\)
这道题我来讲一个不一样的解法:\(dp\)
在写 \(dp\) 之前,我们需要明确以下几个东西:状态的表示,状态转移方程,边界条件和答案的表示。
状态的表示
\(dp[i]\) 表示到达第 \(i\) 个站点所需要的最少钱数, \(w[i]\) 表示在使用最少钱数到达第 \(i\) 个站点时多余的路程。
状态转移方程
dp[i]=dp[i-1]+\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil\times pre\_min(i-1)
\]
w[i]=\bigg\lceil\frac{v[i-1]-w[i-1]}{d}\bigg\rceil-v[i-1]+w[i-1]
\]
其中 \(pre\_min(i)\) 表示前 \(i\) 个站点中最小的油价。
边界条件
dp[i]=0,w[i]=0
\]
答案的表示
dp[n]
\]
问题
在状态转移方程中,怎样在 \(O(1)\) 的时间复杂度下完成 \(pre\_min\) 函数呢?
这就涉及到了一个算法:
\(ST\) 表
在算法和数据结构中,ST表(Sparse Table)是一种用于解决区间查询问题的数据结构。它可以有效地回答各种形式的查询,例如最小值、最大值、区间和等。
简介
ST表的主要思想是通过预处理来加速区间查询。它使用倍增 DP 的思想将一个数组分割成多个子区间,并在每个子区间上计算出某种操作的结果。然后,根据这些预先计算好的结果,我们可以根据需要合并区间来回答各种查询。
具体的实现过程如下:
- 初始化ST表,ST表是一个二维数组。
- 将输入的原始数组填充到ST表的第一行。
- 使用递推关系填充ST表的其他行,直到得到完整的ST表。
- 根据查询的起始位置和区间长度,在ST表中找到对应区间的值,结合适当的操作得出最终结果。
查询操作
对于任何查询操作,我们可以使用以下步骤来回答:
计算出查询区间的长度len。
找到大于等于len的最大值j,使得2^j <= len。
使用预处理的结果和递推关系,在ST表中找到对应的值,并结合适当的操作得到查询结果。
这种方法的时间复杂度为O(1),因为我们只需进行几次常数级别的操作即可回答查询。
应用场景
ST表在解决各种区间查询问题时非常有用。以下是一些常见的应用场景:
- 查询最小值/最大值:通过选择适当的查询操作,在O(1)的时间复杂度内回答每个查询。
- 区间和查询:可以通过使用累积和来实现区间和查询。
- 区间gcd查询:可以通过预处理和递推关系计算区间内的最大公约数。
总结
ST表是一种高效解决区间查询问题的数据结构。通过预先计算和递推关系,我们可以在O(1)的时间复杂度内回答各种形式的查询。它的实现相对简单且灵活,适用于多种应用场景。
模板
初始化(时间复杂度 \(O(\log_2n)\) )
for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
查询(时间复杂度 \(O(1)\) )
l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);
解决问题
有了ST表,我们就可以在O(1)的时间复杂度中查询最值了,那我们程序的最终问题:TLE也解决了。程序整体时间复杂度为O(n),可以通过此题。
AC代码如下。
\(Accept\ Code\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+5;
ll v[N],a[N],w[N],dp[N],st[N][20];
ll n,d,l,r,len,pm;
int main() {
cin>>n>>d;
for(int i=1;i<n;i++) {
cin>>v[i];
}
for(int i=1;i<=n;i++) {
cin>>a[i];
}
for(int i=1;i<=n;i++) {
st[i][0]=a[i];
}
for(int j=1;(1<<j)<=n;j++) {
for(int i=1;i+(1<<j)-1<=n;i++) {
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
for(int i=2;i<=n;i++) {
l=1,r=i-1,len=log2(r-l+1);
pm=min(st[l][len],st[r-(1<<len)+1][len]);
dp[i]=dp[i-1]+ceil(1.0*(v[i-1]-w[i-1])/d)*pm;
w[i]=ceil(1.0*(v[i-1]-w[i-1])/d)*d-(v[i-1]-w[i-1]);
}
cout<<dp[n];
return 0;
}
【luogu题解】P9749 [CSP-J 2023] 公路的更多相关文章
- luogu题解P2312解方程--暴力模+秦九韶
题目链接 https://www.luogu.org/problemnew/show/P2312 分析 这道题很毒啊,这么大的数. 但是如果多项式\(\sum_{i=0}^N a[i]*X^i=0\) ...
- CSP J/S 初赛总结
CSP J/S 初赛总结 2021/9/19 19:29 用官方答案估计 J 涂卡的时候唯一的一支 2B 铅笔坏了,只能用笔芯一个个涂 选择 \(-6\ pts\) 判断 \(-3\ pts\) 回答 ...
- 2019 CSP J/S第2轮 视频与题解
CSP入门组和提高组第二轮题解 转自网络
- luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵
题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...
- luogu题解P1967货车运输--树链剖分
题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...
- luogu题解 P3763 【[TJOI2017]DNA】
题目链接: https://www.luogu.org/problemnew/show/P3763 思路: 首先我们要用到Rabin-Karp哈希,其实就是这个: 若\(w_{str}\)=(\(a_ ...
- luogu题解 P3629 【[APIO2010]巡逻】树的直径变式
题目链接: https://www.luogu.org/problemnew/show/P3629 分析 最近被众多dalao暴虐,这道题傻逼地调了两天才知道错哪 不过这题比较良心给你一个容易发现性质 ...
- luogu题解P4198楼房重建--线段树神操作
题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\( ...
- luogu题解P2502[HAOI2006]旅行--最小生成树变式
题目链接 https://www.luogu.org/problemnew/show/P2502 分析 一个很\(naive\)的做法是从\(s\)到\(t\)双向BFS这当然会TLE 这时我就有个想 ...
- luogu题解P1032字串变换--BFS+STL:string骚操作
题目链接 https://www.luogu.org/problemnew/show/P1032 分析 这题本来很裸的一个BFS,发现其中的字符串操作好烦啊.然后就翻大佬题解发现用STL中的strin ...
随机推荐
- [python]从环境变量和配置文件中获取配置参数
前言 从环境变量和配置文件中获取配置参数,相关库: python-dotenv:第三方库,需要使用pip安装 configparser:标准库 示例代码 test.ini [mysql] host = ...
- debian11安装配置记录
安装 软件包默认是桌面环境 + gnome + 标准安装.如果做服务器,建议标准安装 + ssh server 设置静态ip cd /etc/network/interfaces.d vi ifcfg ...
- Fork me on GitHub彩带添加方法
在博客添加GitHub彩带的方法 针对博客园博客追加如图彩带的方法 依次进入 管理 → 设置 → 页首Html代码 将如下代码粘贴在该处 <a target="_blank" ...
- 【Unity3D】素描特效
1 非真实渲染 法线贴图和凹凸映射中讲述了普通光照的渲染原理,实现的效果比较贴近真实世界(照相写实主义,Photorealism),非真实渲染(Non-Photorealism Rendering ...
- Qt开发思想探幽]QObject、模板继承和多继承
@ 目录 [Qt开发探幽]QObject.模板继承和多继承 1. QObject为什么不允许模板继承: 2.如果需要使用QObject进行多继承的话,子对象引用的父类链至多只能含有一个QObject ...
- msvc++中的预编译头文件pch.hpp和stdafx.h
预编译头文件 在 Visual Studio 中创建新项目时,会在项目中添加一个名为 pch.h 的"预编译标头文件". (在 Visual Studio 2017 及更高版本中, ...
- PYQT5学习(13):QMidArea同时显示多个窗口,创建多个独立的窗口
QMidArea 参考文章:https://blog.csdn.net/jia666666/article/details/81670569 一种同时显示多个窗口的方法,创建多个独立的窗口,这些独立 ...
- 使用 Sealos 一键部署高可用 MinIO,开启对象存储之旅
大家好!今天这篇文章主要向大家介绍如何通过 Sealos 一键部署高可用 MinIO 集群. MinIO 对象存储是什么? 对象是二进制数据,例如图像.音频文件.电子表格甚至二进制可执行代码.对象的大 ...
- 基于 Wiki.js 搭建知识库系统
前言 本文介绍如何使用 Wiki.js 搭建知识库系统. Wiki.js 官网 安装 前提准备 Wiki.js 几乎可以在任何支持 Node.js 的系统上运行.它可以运行在 Linux .Windo ...
- Note -「Suffix Automaton」SAM
Part. 1 基本信息 Part. 1-1 SAM 的构成. SAM 由两个东西构成,一个是一个 DAWG,还有一棵外向树,叫 parent tree. 比如,给你一个字符串 \(S=\sf abb ...