摘要:本文我们就来说说使用ReadWriteLock如何实现一个通用的缓存中心。

本文分享自华为云社区《【高并发】原来ReadWriteLock也能开发高性能缓存,看完我也能和面试官好好聊聊了!》,作者: 冰 河。

在实际工作中,有一种非常普遍的并发场景:那就是读多写少的场景。在这种场景下,为了优化程序的性能,我们经常使用缓存来提高应用的访问性能。因为缓存非常适合使用在读多写少的场景中。而在并发场景中,Java SDK中提供了ReadWriteLock来满足读多写少的场景。本文我们就来说说使用ReadWriteLock如何实现一个通用的缓存中心。

本文涉及的知识点有:

读写锁

说起读写锁,相信小伙伴们并不陌生。总体来说,读写锁需要遵循以下原则:

  • 一个共享变量允许同时被多个读线程读取到。
  • 一个共享变量在同一时刻只能被一个写线程进行写操作。
  • 一个共享变量在被写线程执行写操作时,此时这个共享变量不能被读线程执行读操作。

这里,需要小伙伴们注意的是:读写锁和互斥锁的一个重要的区别就是:读写锁允许多个线程同时读共享变量,而互斥锁不允许。所以,在高并发场景下,读写锁的性能要高于互斥锁。但是,读写锁的写操作是互斥的,也就是说,使用读写锁时,一个共享变量在被写线程执行写操作时,此时这个共享变量不能被读线程执行读操作。

读写锁支持公平模式和非公平模式,具体是在ReentrantReadWriteLock的构造方法中传递一个boolean类型的变量来控制。

public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}

另外,需要注意的一点是:在读写锁中,读锁调用newCondition()会抛出UnsupportedOperationException异常,也就是说:读锁不支持条件变量。

缓存实现

这里,我们使用ReadWriteLock快速实现一个缓存的通用工具类,总体代码如下所示。

public class ReadWriteLockCache<K,V> {
private final Map<K, V> m = new HashMap<>();
private final ReadWriteLock rwl = new ReentrantReadWriteLock();
// 读锁
private final Lock r = rwl.readLock();
// 写锁
private final Lock w = rwl.writeLock();
// 读缓存
public V get(K key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
// 写缓存
public V put(K key, V value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
}

可以看到,在ReadWriteLockCache中,我们定义了两个泛型类型,K代表缓存的Key,V代表缓存的value。在ReadWriteLockCache类的内部,我们使用Map来缓存相应的数据,小伙伴都都知道HashMap并不是线程安全的类,所以,这里使用了读写锁来保证线程的安全性,例如,我们在get()方法中使用了读锁,get()方法可以被多个线程同时执行读操作;put()方法内部使用写锁,也就是说,put()方法在同一时刻只能有一个线程对缓存进行写操作。

这里需要注意的是:无论是读锁还是写锁,锁的释放操作都需要放到finally{}代码块中。

在以往的经验中,有两种向缓存中加载数据的方式,一种是:项目启动时,将数据全量加载到缓存中,一种是在项目运行期间,按需加载所需要的缓存数据。

接下来,我们就分别来看看全量加载缓存和按需加载缓存的方式。

全量加载缓存

全量加载缓存相对来说比较简单,就是在项目启动的时候,将数据一次性加载到缓存中,这种情况适用于缓存数据量不大,数据变动不频繁的场景,例如:可以缓存一些系统中的数据字典等信息。整个缓存加载的大体流程如下所示。

将数据全量加载到缓存后,后续就可以直接从缓存中读取相应的数据了。

全量加载缓存的代码实现比较简单,这里,我就直接使用如下代码进行演示。

public class ReadWriteLockCache<K,V> {
private final Map<K, V> m = new HashMap<>();
private final ReadWriteLock rwl = new ReentrantReadWriteLock();
// 读锁
private final Lock r = rwl.readLock();
// 写锁
private final Lock w = rwl.writeLock(); public ReadWriteLockCache(){
//查询数据库
List<Field<K, V>> list = .....;
if(!CollectionUtils.isEmpty(list)){
list.parallelStream().forEach((f) ->{
m.put(f.getK(), f.getV);
});
}
}
// 读缓存
public V get(K key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
// 写缓存
public V put(K key, V value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
}

按需加载缓存

按需加载缓存也可以叫作懒加载,就是说:需要加载的时候才会将数据加载到缓存。具体来说:就是程序启动的时候,不会将数据加载到缓存,当运行时,需要查询某些数据,首先检测缓存中是否存在需要的数据,如果存在,则直接读取缓存中的数据,如果不存在,则到数据库中查询数据,并将数据写入缓存。后续的读取操作,因为缓存中已经存在了相应的数据,直接返回缓存的数据即可。

这种查询缓存的方式适用于大多数缓存数据的场景。

我们可以使用如下代码来表示按需查询缓存的业务。

class ReadWriteLockCache<K,V> {
private final Map<K, V> m = new HashMap<>();
private final ReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
V get(K key) {
V v = null;
//读缓存
r.lock();
try {
v = m.get(key);
} finally{
r.unlock();
}
//缓存中存在,返回
if(v != null) {
return v;
}
//缓存中不存在,查询数据库
w.lock();
try {
//再次验证缓存中是否存在数据
v = m.get(key);
if(v == null){
//查询数据库
v=从数据库中查询出来的数据
m.put(key, v);
}
} finally{
w.unlock();
}
return v;
}
}

这里,在get()方法中,首先从缓存中读取数据,此时,我们对查询缓存的操作添加了读锁,查询返回后,进行解锁操作。判断缓存中返回的数据是否为空,不为空,则直接返回数据;如果为空,则获取写锁,之后再次从缓存中读取数据,如果缓存中不存在数据,则查询数据库,将结果数据写入缓存,释放写锁。最终返回结果数据。

这里,有小伙伴可能会问:为啥程序都已经添加写锁了,在写锁内部为啥还要查询一次缓存呢?

这是因为在高并发的场景下,可能会存在多个线程来竞争写锁的现象。例如:第一次执行get()方法时,缓存中的数据为空。如果此时有三个线程同时调用get()方法,同时运行到 w.lock()代码处,由于写锁的排他性。此时只有一个线程会获取到写锁,其他两个线程则阻塞在w.lock()处。获取到写锁的线程继续往下执行查询数据库,将数据写入缓存,之后释放写锁。

此时,另外两个线程竞争写锁,某个线程会获取到锁,继续往下执行,如果在w.lock()后没有v = m.get(key); 再次查询缓存的数据,则这个线程会直接查询数据库,将数据写入缓存后释放写锁。最后一个线程同样会按照这个流程执行。

这里,实际上第一个线程已经查询过数据库,并且将数据写入缓存了,其他两个线程就没必要再次查询数据库了,直接从缓存中查询出相应的数据即可。所以,在w.lock()后添加v = m.get(key); 再次查询缓存的数据,能够有效的减少高并发场景下重复查询数据库的问题,提升系统的性能。

读写锁的升降级

关于锁的升降级,小伙伴们需要注意的是:在ReadWriteLock中,锁是不支持升级的,因为读锁还未释放时,此时获取写锁,就会导致写锁永久等待,相应的线程也会被阻塞而无法唤醒。

虽然不支持锁升级,但是ReadWriteLock支持锁降级,例如,我们来看看官方的ReentrantReadWriteLock示例,如下所示。

class CachedData {
Object data;
volatile boolean cacheValid;
final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// Must release read lock before acquiring write lock
rwl.readLock().unlock();
rwl.writeLock().lock();
try {
// Recheck state because another thread might have
// acquired write lock and changed state before we did.
if (!cacheValid) {
data = ...
cacheValid = true;
}
// Downgrade by acquiring read lock before releasing write lock
rwl.readLock().lock();
} finally {
rwl.writeLock().unlock(); // Unlock write, still hold read
}
} try {
use(data);
} finally {
rwl.readLock().unlock();
}
}
}}

数据同步问题

首先,这里说的数据同步指的是数据源和数据缓存之间的数据同步,说的再直接一点,就是数据库和缓存之间的数据同步。

这里,我们可以采取三种方案来解决数据同步的问题,如下图所示

超时机制

这个比较好理解,就是在向缓存写入数据的时候,给一个超时时间,当缓存超时后,缓存的数据会自动从缓存中移除,此时程序再次访问缓存时,由于缓存中不存在相应的数据,查询数据库得到数据后,再将数据写入缓存。采用这种方案需要注意缓存的穿透问题。

定时更新缓存

这种方案是超时机制的增强版,在向缓存中写入数据的时候,同样给一个超时时间。与超时机制不同的是,在程序后台单独启动一个线程,定时查询数据库中的数据,然后将数据写入缓存中,这样能够在一定程度上避免缓存的穿透问题。

实时更新缓存

这种方案能够做到数据库中的数据与缓存的数据是实时同步的,可以使用阿里开源的Canal框架实现MySQL数据库与缓存数据的实时同步。

点击关注,第一时间了解华为云新鲜技术~

常遇到读多写少,教你用ReadWriteLock实现一个通用的缓存中心的更多相关文章

  1. C++高并发场景下读多写少的解决方案

    C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也 ...

  2. C++高并发场景下读多写少的优化方案

    概述 一谈到高并发的优化方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读 ...

  3. JDK1.8 StampedLock: 解决ReentrantReadWriteLock在读多写少情况下,写线程饥饿问题

    ReentrantReadWriteLock 在沒有任何读写锁时,才可以取得写入锁,这可用于实现了悲观读取(Pessimistic Reading), 即如果执行中进行读取时,经常可能有另一执行要写入 ...

  4. 标准I/O库之读和写流

    一旦打开了流,则可在三种不同类型的非格式化I/O中进行选择,对其进行读.写操作: (1)每次一个字符的I/O.一次读或写一个字符,如果流是带缓冲的,则标准I/O会处理所有缓冲. (2)每次一行的I/O ...

  5. python3 对excel读、写、修改的操作

    一.对excel的写操作实例: 将一个列表的数据写入excel, 第一行是标题,下面行数具体的数据 import xlwt #只能写不能读 stus = [['姓名', '年龄', '性别', '分数 ...

  6. Day16_98_IO_一边读一边写

    一边读一边写 import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutp ...

  7. NAND Flash的基本操作——读、写、擦除

    基本操作 这里将会简要介绍一下NAND Flash的基本操作在NAND Flash内部是如何进行的,基本操作包括:读.写和擦除.   读:     当我们读取一个存储单元中的数据时(如图2.4),是使 ...

  8. python文件处理-读、写

    Python中文件处理的操作包括读.写.修改,今天我们一起来先学习下读和写操作. 一.文件的读操作 例一: #文件读操作 f = open(file="first_blog.txt" ...

  9. 移动端 h5 uniapp 读,写,删本地文件或sd文件

    移动端 h5 uniapp 读,写,删本地文件或sd文件 应用场景: 当我们需要做离线应用或者是加载本地文件时使用到此方法.(本篇文章给大家分享访问app私有文件目录,系统公共目录,sd外置存储的文件 ...

  10. java的poi技术读,写Excel[2003-2007,2010]

    在上一篇blog:java的poi技术读取Excel[2003-2007,2010] 中介绍了关于java中的poi技术读取excel的相关操作 读取excel和MySQL相关: java的poi技术 ...

随机推荐

  1. Redis 6 学习笔记 3 —— 用SpringBoot整合Redis的踩坑,了解事务、乐观锁、悲观锁

    SpringBoot整合Redis时踩到的坑 jdk1.8环境,用idea的Spring Initializr创建spring boot项目,版本我选的2.7.6.pom文件添加的依赖如下,仅供参考. ...

  2. Python 模块:创建、导入和使用

    什么是模块? 将模块视为代码库.模块是一个包含一组函数的文件,您想要在应用程序中包含这些函数. 创建一个模块 要创建一个模块,只需将要包含在其中的代码保存在扩展名为 .py 的文件中: 示例:将以下代 ...

  3. Chromium VIZ工作流

    在 Chromium 中 viz 的核心逻辑运行在 GPU 进程中,负责接收其他进程产生的 viz::CompositorFrame(简称 CF),然后把这些 CF 进行合成,并将合成的结果最终渲染在 ...

  4. 从windows到linux,图形化操作到命令行操作讲解

    作为一个后端开发人员,刚开始进入到职场中,linux还不是必备项.但是随着开发经验的提升,慢慢就会接触到linux,所以就有了那句:开发必须要会linux.一开始我也不知道linux是干嘛的,学那些命 ...

  5. 决策树C4.5算法的技术深度剖析、实战解读

    在本篇深入探讨的文章中,我们全面分析了C4.5决策树算法,包括其核心原理.实现流程.实战案例,以及与其他流行决策树算法(如ID3.CART和Random Forests)的比较.文章不仅涵盖了丰富的理 ...

  6. Codeforces Round #656 (Div. 3) E. Directing Edges(拓扑排序)

    题目传送门 首先发现初始图五有向环的话那么肯定是"YES",否则是"NO".然后找到一种满足要求地建树规则即可.这里采用拓扑排序建树,先dfs找出目前点的拓扑序 ...

  7. Opencv实例练习

    实例所用的函数可在另一篇文章查询:  https://www.cnblogs.com/Zhouce/p/17867164.html 1.图像读取 1 import cv2 # 引入opencv库 2 ...

  8. excel柱状图自定x轴y轴

    在Excel中,柱状图是一种常用的数据可视化方式,可以直观地展示不同数据之间的比较关系.默认情况下,Excel会根据数据自动生成X轴和Y轴的刻度和标签.然而,如果你想要自定义X轴和Y轴,在柱状图中显示 ...

  9. 分享一个LCD驱动框架

    首先需要说明的是本篇文章不是关于如何点亮一块LCD屏的教程,而是介绍一个LCD开发框架,更准确的说是介绍一个LCD的中间件(Middlwware),用来连接UI和不同类型的LCD屏.笔者本人的工作内容 ...

  10. 使用CompletableFuture实现多个异步任务并行完成后合并结果

    业务场景 需要同时从多个副本数据库中查询数据,并对查询结果进行合并去重处理后返回前端. 实现过程涉及多数据源切换,这里不作过多讨论. 编码实现 实现过程: 1.定义异步查询数据方法: 2.通过Comp ...