CF2067D - Object Identification

题目大意

有一个对你公开的 \(x\) 数组和一个对你隐藏的 \(y\) 数组,保证没有任何两个相同的 \(\{x_i, y_i\}\),并且 \(x_i \neq y_i\),对于这两个数组,有以下两种可能:

  • A:一个有 \(n\) 个结点的有向图,每一条边从 \(x_i\) 指向 \(y_i\)。
  • B:一个二维坐标系中的一些点,每个点的坐标为 \((x_i, y_i)\)。

你可以对这个图进行询问:

  • 若这个图是一个有向图,则你的询问 \(i, j\) 为从结点 \(i\) 到结点 \(j\) 的最短路径长度。
  • 若这个图是一个二维坐标系,则你的询问 \(i, j\) 为从点 \((x_i, y_i)\) 到 \((x_j, y_j)\) 的曼哈顿距离 \(|x_i - x_j| + |y_i - y_j|\)。

现在,你有最多 \(2\) 次询问机会,来确定这个图到底是一个有向图,还是一个二维坐标系。

思路

很好的一个交互题,一看题目,居然只给 \(2\) 次询问?!有意思。

要区分这两种图,我们要从二者分别的特征入手:

  • 有向图:所有的边是单向的,不可反向行走,因此两个结点正着走和反着走的距离不一定相同。
  • 二维坐标系:所有的点两两之间的曼哈顿距离是相同的,因此正着走和反着走的距离都相同,并在该题目条件下,不存在重合的两个点,因此距离一定不为 \(0\)。

因此,这里有一个初步的思路,挑选两个数字,正着问一次,反着问一次,判断两次询问的距离是否相同。

但很遗憾,就算是有向图,正着和反着的距离也有可能会相同(如下图中的 \(1\) 和 \(3\))。



因此,若问出来距离相同,仍然无法判断为有向图还是二维坐标系。

那么,有没有什么更特殊的点,能直接作为判断标志呢?

有的,在有向图(不含自环)中,若一个结点的出度为 \(0\),也就是这个结点没有任何的出边,那么该结点无法到达任何其他结点,即距离为 \(0\)!

也就是说,如果有 \(1\) 到 \(n\) 中的某一个数在数组 \(x\) 中一次也没有出现,那么这个结点的出度一定为 \(0\),此时,只需要把它作为询问的第一个数,再任意询问另一个数,如果距离为 \(0\),则是有向图,如果距离不为 \(0\),则是二维坐标系。

当然,不难发现,还有一种情况会发生,那就是 \(1\) 到 \(n\) 中的所有数字均在 \(x\) 数组中出现,并且一定只会出现一次(如果有某个数字出现两次及以上,则一定会有一个数字不出现)。

在这种情况中,如果是有向图,则不存在出度为 \(0\) 的结点,又应该如何判断呢?

这里我们就要用到我们 \(x\) 数组的信息了,由于 \(x\) 数组是已知的,再结合曼哈顿距离的定义,我们可以得出下面这个显而易见的结论:\(d(i, j) \geq |x_j - x_i|\)。

因此,我们可以用这个不等式来区分有向图和二维坐标系,那选用哪两个数字来询问呢?

这里我们选取 \(1\) 和 \(n\) 在 \(x\) 数组中的位置 \(a,b\),因为 \(d(a, b) \geq n - 1\),而我们的有向图中一共有 \(n\) 个结点,任意两点的距离最大值只可能达到 \(n - 1\),因此如果询问 \(1\) 和 \(n\) 在 \(x\) 数组中的位置后,如果得到的答案 \(> n - 1\),则一定是二维坐标系,如果得到的答案 \(< n - 1\),则一定是有向图。

如此一番操作后,我们还剩下一次询问机会,并且如果这个时候还没有得出答案,则只剩下一种情况:\(d(a, b) = n - 1\)!

再仔细观察可以发现,在有 \(n\) 个结点的有向图中,每个结点的出度均为 \(1\),两点最短路径长为 \(n - 1\),那这时候先不管终点 \(b\) 的那一条出边,此时这个图,一定是一个以 \(a\) 为起点,\(b\) 为重点的链!

此时,我们仅剩一条边没有连接,也就是数字 \(n\) 对应的 \(b\) 结点,我们注意到题目给出的数据范围 \(n \geq 3\),因此,\(b\) 结点要么向其他结点连边,无法到达结点 \(a\),要么向 \(a\) 连边,但 \(d(b, a) = 1 \neq d(a, b)\),所以一定是有向图。

因此这时只需要再询问一次 \(d(b, a)\),判断 \(d(a, b)\) 是否等于 \(d(b, a)\),若等于,则是二维坐标系,否则是有向图,总询问次数 \(2\) 次,通过!

AC CODE

const int N = 2e5 + 9;
int a[N];
int p[N];
int cnt[N]; int ask(int x, int y) {
cout << "? " << x << ' ' << y << endl;
int op;cin >> op;
return op;
} void solve()
{
int n;cin >> n;
for(int i = 1;i <= n;i ++)cin >> a[i];
for(int i = 1;i <= n;i ++)cnt[i] = 0; for(int i = 1;i <= n;i ++)cnt[a[i]] ++, p[a[i]] = i; for(int i = 1;i <= n;i ++) {
if(!cnt[i]) {
if(ask(i, (i % n + 1)) == 0) {
cout << "! A" << endl;
} else {
cout << "! B" << endl;
}
return;
}
} int ck = ask(p[1], p[n]); if(ck >= n) {
cout << "! B" << endl;
return;
} if(ck < n - 1) {
cout << "! A" << endl;
return;
} int dk = ask(p[n], p[1]); if(dk == ck) {
cout << "! B" << endl;
} else {
cout << "! A" << endl;
}
}

CF2067D Object Identification的更多相关文章

  1. SAP IDOC-Segment E1EDP19 Document Item Object Identification

    PO创建时,通过IDOC EDI 接口自动创建SO 案例. BD54 配置逻辑系统 SCC4 给集团分配逻辑系统  SM59 新建RFC 链接 WE21 创建IDOC 处理端口 we20 创建合作伙伴 ...

  2. [OpenCV] Identify and Track Specific Object

    Abstract—Augmented Reality (AR) has become increasingly popular in recent years and it has a widespr ...

  3. [Object Tracking] Identify and Track Specific Object

    Abstract—Augmented Reality (AR) has become increasingly popular in recent years and it has a widespr ...

  4. Global Average Pooling Layers for Object Localization

    For image classification tasks, a common choice for convolutional neural network (CNN) architecture ...

  5. Attribute-based identification schemes for objects in internet of things

    Methods and arrangements for object identification. An identification request is received from diffe ...

  6. Object Creation

    Although using the object constructor or an object literal are convenient ways to create single obje ...

  7. EEG: electrode positions & Broadmann atlas

    Source: http://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/nearesteeg.htm   Area LEFT RIG ...

  8. QTP常用功能

    1.QTP录制过程的截图 查看录制脚本过程中QTP的截图可以在QTP中查找,在关键字视图中点击每一步都对应一个截图   2.在关键字视图中为测试步骤添加注释 在关键字视图中表格列头中单击鼠标右键,选择 ...

  9. QTP之delphi试用感想一(自动化测试)

    这两天一直在琢磨自动化测试,自动化测试,其实与单元测试有一些相同之处,单元测试的目的也是可以一次写,多次运行,对于测试驱动及后期维护真是有非常多的好处,用自动化测试工具也是如何,主要目的是为了回归测试 ...

  10. wavecom短信猫常用AT命令

    wavecom短信猫常用AT命令 一.一般命令 1. AT+CGMI 给出模块厂商的标识. 2. AT+CGMM 获得模块标识.这个命令用来得到支持的频带 (GSM 900,DCS 1800 或PCS ...

随机推荐

  1. Dapr-3: 从 20000 英尺之上俯瞰 Dapr

    第 3 章 从 20000 英尺之上俯瞰 Dapr Dapr at 20,000 feet | Microsoft Docs 在第 1 章中,我们讨论了分布式微服务应用的吸引力.但是,我们也指出了它会 ...

  2. GienTech动态|入选软件和信息技术服务竞争力百强;参展世界计算大会、网络安全博览会

    ​ ​ ---- GienTech动态 ---- 中电金信参展广东省网络安全博览会.世界计算机大会 ​ ​ 近期,中电金信跟随中国电子参展2023年广东省网络安全博览会(下简称"博览会&qu ...

  3. PHP 简易的BASE64加密

    有这样一个有趣的公式:x<100;  (x*53*17)%100 = x;这个公司的原理:53*17=901,x*901,的数后2位数还是x:任何符合 a * b = 100 * n +1 的值 ...

  4. DDD你真的理解清楚了吗?怎么准确理解“值对象”

    这些年,随着软件业的不断发展,软件系统开始变得越来越复杂而难于维护.这时,越来越多的开发团队开始选择实践DDD领域驱动设计.领域驱动设计是一种非常优秀的软件设计思想,它可以非常好地帮助我们梳理复杂业务 ...

  5. Qt编写的项目作品33-斗图神器(雨田哥作品)

    一.功能特点 支持HTTP,HTTPS网络表情图片下载,本地缓存. 采用MV模式,支持大量图片表情预览查看. 采用多线程异步下载图片刷新. 图片搜索功能(因网络提供API无信息字段提供,占搜索不了.但 ...

  6. kubernetes系列(九) - 深入掌握Service

    1. Service概念 2. Service的类型 2.1 ClusterIP(默认) 2.1.1 原理 2.1.2 ClusterIP资源清单 2.2 NodePort 2.2.1 NodePor ...

  7. kubeadm 快速搭建 Kubernetes 集群

    快速搭建 K8s 集群 角色 ip k8s-master-01 192.168.111.170 k8s-node-01 192.168.111.171 k8s-node-02 192.168.111. ...

  8. CDS标准视图:设备信息 I_EquipmentData

    视图名称:I_EquipmentData 视图类型:基础视图 视图代码: 点击查看代码 @EndUserText.label: 'Equipment Data' @VDM.viewType: #COM ...

  9. Linux部署Redis哨兵集群 一主两从三哨兵

    目录一.哨兵集群架构介绍二.下载安装Redis2.1.选择需要安装的Redis版本2.2.下载并解压Redis2.3.编译安装Redis三.搭建Redis一主两从集群3.1.准备配置文件3.1.1.准 ...

  10. Redis常用命令手册

    http://c.biancheng.net/redis_command/ Redis客户端(client)命令 Redis 提供了一些操作客户端(client)的命令,比如查询所有已连接到服务器的客 ...