【洛谷4158/BZOJ1296】[SCOI2009]粉刷匠(动态规划)
题目:洛谷4158
分析:
这题一看就是动态规划。
可以看出,如果每个木条粉刷的次数是固定的,那么这些木条是互不干扰的,因此对于每个木条可以通过dp来求出把T次中的j次分配给这个木条时可以获得的最大正确数,然后再dp出如何分配这T个粉刷次数可以获得最优解(类似于背包)。
针对这个思路设计两个状态:
\(dp1[i][j]\)表示一个木条的前\(i\)个格子被粉刷j次时最大正确数
\(dp2[i][j]\)表示前i个木条粉刷\(j\)次时最大正确数
\(dp1\)能够这样设计的理由是:刷前\(a\)个格子显然不比只刷前\(a\)个格子中的一段差(因为后一种情况下没刷的格子一定是错误的)
于是能想cai到dp方程:
$$dp1[i][j]=max(dp1[i][j],dp1[k-1][j-1]+max(k-i中 0 的数量 , k-i中 1 的数量) )$$
(对这个木条的第$j$次粉刷是从$k$刷到$i$)
($k$~$j$中0、1的数量可以用前缀和来快速求出)
$$dp2[i][j]=max(dp2[i][j],dp2[i-1][j-k]+dp1[m][k])$$
(这个类似背包,不解释)
代码:
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
int n,m,t,sum[60],dp1[60][2500],dp2[60][2500];
//sum[i]表示前i个格子中1的数量
//dp1[i][j]表示一个木条的前i个格子被粉刷j次时最大正确数
//dp2[i][j]表示前i个木条粉刷j次时最大正确数
char in[60];
int main(void)
{
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++)
{
scanf("%s",in+1);
for(int i=1;i<=m;i++)
sum[i]=sum[i-1]+in[i]-'0';
memset(dp1,0,sizeof(dp1));
for(int i=1;i<=m;i++)
//一个木条被刷的次数不可能大于它的长度
for(int j=1;j<=m;j++)
for(int k=1;k<=j;k++)
//k表示第i次从第k个格子刷到第j个格子
dp1[j][i]=max(dp1[j][i],
dp1[k-1][i-1]+max(sum[j]-sum[k-1],j-k+1-(sum[j]-sum[k-1])));
//j-k+1-(sum[j]-sum[k-1]即从k到j中0的数量
for(int j=1;j<=t;j++)
{
for(int k=1;k<=min(j,m);k++)
dp2[i][j]=max(dp2[i][j],dp2[i-1][j-k]+dp1[m][k]);
}
}
printf("%d",dp2[n][t]);
return 0;
}
【洛谷4158/BZOJ1296】[SCOI2009]粉刷匠(动态规划)的更多相关文章
- 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠
P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...
- BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- bzoj 1296: [SCOI2009]粉刷匠 动态规划
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- 【Dp】Bzoj1296 [SCOI2009] 粉刷匠
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- BZOJ1296: [SCOI2009]粉刷匠 DP
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)
传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...
- BZOJ1296 [SCOI2009]粉刷匠 【dp】
题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...
随机推荐
- buf.readInt16BE()
buf.readInt16BE(offset[, noAssert]) buf.readInt16LE(offset[, noAssert]) offset {Number} 0 noAssert { ...
- buf.writeInt16BE()函数详解
buf.writeInt16BE(value, offset[, noAssert]) buf.writeInt16LE(value, offset[, noAssert]) value {Numbe ...
- POJ 1226 Substrings
Substrings Time Limit: 1000ms Memory Limit: 10000KB This problem will be judged on PKU. Original ID: ...
- pat甲级 1107. Social Clusters (30)
When register on a social network, you are always asked to specify your hobbies in order to find som ...
- 53. spring boot系列合集【从零开始学Spring Boot】
前40章节的spring boot系列已经打包成PDF在csdn进行发布了,如果有需要的可以进行下载. 下载地址:http://download.csdn.net/detail/linxinglian ...
- A multiprocessing system including an apparatus for optimizing spin-lock operations
A multiprocessing system having a plurality of processing nodes interconnected by an interconnect ne ...
- 模拟赛 Problem 2 不等数列(num.cpp/c/pas)
Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...
- Ubuntu 16.04添加启动图标到Dash Home中
一.添加图标: 图标信息在以下两处地方: /usr/share/applications ~/.local/share/applications(用户独立配置存放地方,是个隐藏文件夹) 图标信息文件以 ...
- docker国内镜像拉取和镜像加速registry-mirrors配置修改
docker国内镜像拉取和镜像加速registry-mirrors配置修改 学习了:http://blog.csdn.net/u014231523/article/details/61197945 站 ...
- [Vue @Component] Dynamic Vue.js Components with the component element
You can dynamically switch between components in a template by using the reserved <component> ...