Guass列主元、平方根法、追赶法求解方程组的C++实现
一,要解决的问题
选用合适的算法,求解三种线性方程组:一般线性方程组,对称正定方程组,三对角线性方程组。
方程略。
二,数值方法
1,使用Guass列主元消去法求解一般线性方程组。
Guass列主元是为了防止Guass消去法中大数吃掉小数而引出的一种线性方程组求解方法,消元时选用一列中绝对值最大的元素作为列主元素。
算法伪代码:
消元过程
回代过程
2,使用平方根法求解对称正定方程组
平方根法。它把系数矩阵(对称正定矩阵)表示成一个下三角矩阵L和其转置的乘积的分解。这样的分解又称为Cholesky分解。
3,使用追赶法求解三对角线性方程组
三对角线性方程组是指这一类的线性方程组:系数矩阵是一个对角占优的三对角矩阵。追赶法是专门用来求解三对角线性方程组的,它将系数矩阵分解成alpha矩阵和beta矩阵的乘积,例如以下图所看到的:
三。算法
1。Guass列主元消去法
/*
CreateOn:2016/03/20
Author:linxiaobai
Function:linear equation solution
solution1:列主元Guass消去法求解一般线性方程组
*/
#include "stdafx.h"
# include<iostream>
# include<algorithm>
# include<fstream>
# include<iomanip>
# include<cmath>
using namespace std;
double a[15][15];
const int N=10;
double res[N+1];
void printArry(double a[][15])//打印增广矩阵
{
for(int i=1;i<=10;i++)
{
for(int j=1;j<=11;j++)
{
cout<<setw(3)<<a[i][j]<<" ";
}
cout<<endl;
}
}
int _tmain(int argc, _TCHAR* argv[])
{
cout<<"【运用列主元Guass求解一般线性方程组】"<<endl;
//读入增广矩阵
ifstream in;
in.open("data.txt");
if(!in)
{
cerr<<"file open failed!"<<endl;
return 0;
}
double x;
int i=1,j=1;
while(!in.eof())
{
in>>a[i][j];
j++;
if(j>11)
{
i++;j=1;
}
}
cout<<"增广矩阵:"<<endl<<"++++++++++++++++++++++++++"<<endl;
printArry(a);
cout<<"++++++++++++++++++++++++++";
for(int k=1;k<=N-1;k++)
{
double tmp=abs(a[k][k]);
int ind=k;
for(int j=k;j<=N;j++)//找绝对值最大的行
{
if(abs(a[j][k])>tmp)
{tmp=abs(a[j][k]);ind=j;}
}
//若a[ind][k]=0,停止计算
if(a[ind][k]==0){cout<<"no unique solution"<<endl;return 0;}
//绝对值最大的行交换到第k行
if(ind!=k)
for(int j=1;j<=N+1;j++)
swap(a[ind][j],a[k][j]);
//消元计算
double p;
for(int i=k+1;i<=N;i++)
{
p=a[i][k]/a[k][k];
for(int j=k;j<=N+1;j++)
a[i][j]-=p*a[k][j];
}
}
if(a[N][N]==0)
{cout<<"no unique solution"<<endl;return 0;}
//回代求解
res[N]=a[N][N+1]/a[N][N];
double s;
for(int i=N-1;i>=1;i--)
{
s=0;
for(int j=i+1;j<=N;j++)
s+=a[i][j]*res[j];
res[i]=(a[i][N+1]-s)/a[i][i];
}
//输出解向量为
cout<<endl<<endl<<"解向量为:"<<endl;
for(int i=1;i<=N;i++)
if(abs(res[i])<10e-14)
cout<<"0"<<" ";
else
cout<<res[i]<<" ";
cout<<endl;
return 0;
}
2,使用平方根算法解对称正定方程组
/*
CreateOn:2016/03/20
Author:linxiaobai
Function:linear equation solution
solution1:使用平方根算法解对称正定方程组
*/
# include"stdafx.h"
# include<iostream>
# include<fstream>
# include<cmath>
# include<iomanip>
using namespace std;
double a[10][10];
const int N=8;
double b[N+1],xx[N+1],yy[N+1];
void printArry(double a[][10])//输出系数矩阵
{
for(int i=1;i<=8;i++)
{
for(int j=1;j<=8;j++)
{
cout<<setw(3)<<a[i][j]<<" ";
}
cout<<endl;
}
}int main()
{
cout<<"【运用平方根算法解对称正定方程组】"<<endl;
/*读入系数矩阵*/
ifstream in;
in.open("data2.txt");
if(!in)
{
cerr<<"file open failed!"<<endl;
return 0;
}
int i=1,j=1;
while(i<=N)
{
in>>a[i][j];
j++;
if(j>8)
{
i++;j=1;
}
}
/*读入b[]*/
for(int i=1;i<=N;i++)
in>>b[i];
cout<<"系数矩阵:"<<endl<<"++++++++++++++++++++++++++"<<endl;
printArry(a);
cout<<endl<<endl<<"b:"<<endl;
for(int i=1;i<=N;i++)
cout<<setw(3)<<b[i]<<" ";
cout<<endl<<"++++++++++++++++++++++++++";
//開始计算。A=GG',G存在A的下三角
for(int k=1;k<=N;k++)
{
double s1=0;
for(int m=1;m<=k-1;m++)
s1+=pow(a[k][m],2);
a[k][k]=sqrt(a[k][k]-s1);
for(int i=k+1;i<=N;i++)
{
double s2=0;
for(int m=1;m<=k-1;m++)
s2+=a[i][m]*a[k][m];
a[i][k]=(a[i][k]-s2)/a[k][k];
}
//计算y
double s3=0;
for(int m=1;m<=k-1;m++)
s3+=a[k][m]*yy[m];
yy[k]=(b[k]-s3)/a[k][k];
}
//计算x
xx[N]=yy[N]/a[N][N];
for(int k=N-1;k>=1;k--)
{
double s4=0;
for(int m=k+1;m<=N;m++)
s4+=a[m][k]*xx[m];
xx[k]=(yy[k]-s4)/a[k][k];
}
cout<<endl<<"解向量为:"<<endl;
for(int i=1;i<=N;i++)
cout<<setw(3)<<xx[i]<<" ";
cout<<endl;
return 0;
}
3,使用追赶法解三对角线性方程组
/*
CreateOn:2016/03/20
Author:linxiaobai
Function:linear equation solution
solution1:使用追赶法解三对角线性方程组
*/
# include"stdafx.h"
# include<iostream>
# include<fstream>
# include<iomanip>
# include<cmath>
using namespace std;
const int N=10;
double a[N+1],c[N+1],d[N+1],xx[N+1],yy[N+1];
int main()
{
cout<<"【运用追赶法解三对角线性方程组】"<<endl;
//a[N]:主对角线上的元素
for(int i=1;i<=N;i++)
a[i]=4;
//c[N]:上辅对角线上的元素
for(int i=1;i<=N-1;i++)
c[i]=-1;
//d[N]:下辅对角线上的元素
for(int i=2;i<=N;i++)
d[i]=-1;
double b[]={0,7,5,-13,2,6,-12,14,-4,5,-5};
cout<<"++++++++++++++++++++++++++"<<endl;
cout<<"主对角线上的元素a:"<<endl;
for(int i=1;i<=N;i++)
cout<<setw(3)<<a[i]<<" ";
cout<<endl<<endl<<"上辅对角线上的元素c:"<<endl;
for(int i=1;i<=N-1;i++)
cout<<setw(3)<<c[i]<<" ";
cout<<endl<<endl<<"下辅对角线上的元素d:"<<endl;
for(int i=2;i<=N;i++)
cout<<setw(3)<<d[i]<<" ";
cout<<endl<<endl<<"b:"<<endl;
for(int i=1;i<=N;i++)
cout<<setw(3)<<b[i]<<" ";
cout<<endl<<"++++++++++++++++++++++++++"<<endl;
/*開始计算*/
double alpha[N+1],beta[N+1];
alpha[1]=a[1];
for(int i=1;i<=N-1;i++)
{
beta[i]=c[i]/alpha[i];
alpha[i+1]=a[i+1]-d[i+1]*beta[i];
}
yy[1]=b[1]/alpha[1];
for(int i=2;i<=N;i++)
{
yy[i]=(b[i]-d[i]*yy[i-1])/alpha[i];
}
xx[N]=yy[N];
for(int i=N-1;i>=1;i--)
xx[i]=yy[i]-beta[i]*xx[i+1];
//解向量为:
cout<<endl<<"解向量为:"<<endl;
for(int i=1;i<=N;i++)
if(abs(xx[i])<10e-14)
cout<<"0"<<" ";
else
cout<<xx[i]<<" ";
cout<<endl;
return 0;
}
四,数值结果
1,Guass列主元消去法
2,使用平方根算法解对称正定方程组
3,使用追赶法解三对角线性方程组
五,结果分析与实验总结
浮点计算产生的误差
在Guass消元算法之前的代码中,我使用了近似的方法,将绝对值小于10的-14次方的值近似为0,如今去掉这个处理。来看一下结果:
for(int i=1;i<=N;i++)
//if(abs(res[i])<10e-14)
//cout<<"0"<<" ";
//else
cout<<res[i]<<" ";
能够看到x3的值是一个十分接近于0的数,假设将消元后的系数矩阵打印出来。能够看到消元后的系数矩阵并非一个真正的上三角矩阵,下三角部分有几处的值是一个绝对值极小的值。这是因为计算机的浮点计算造成的,浮点数在计算机中本身就不是一个精确的数,在消元的过程中。一些浮点运算有误差,于是最后得到的是近似值,而不是0。
同理,平方根法和追赶法也会产生由浮点数计算引起的误差,降低计算误差正是学习数值分析的目的。
Guass列主元、平方根法、追赶法求解方程组的C++实现的更多相关文章
- 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)
数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b 具体的方法和代码以如下方程(3x3矩阵)为例进行说明: 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现: ...
- 插值代码17个---MATLAB
函数名 功能Language 求已知数据点的拉格朗日插值多项式Atken 求已知数据点的艾特肯插值多项式Newton 求已知数据点的均差形式的牛顿插值多项式Newtonforward 求已知数据点的前 ...
- MATLAB求解方程与方程组
1. solve函数 ①求解单个一元方程的数值解 syms x; x0 = double(solve(x +2 - exp(x),x)); 求x+2 = exp(x)的解,结果用double ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- 高斯消去、追赶法 matlab
1. 分别用Gauss消去法.列主元Gauss消去法.三角分解方法求解方程组 程序: (1)Guess消去法: function x=GaussXQByOrder(A,b) %Gauss消去法 N = ...
- (原创)列主元Gauss消去法的通用程序
import numpy as np np.set_printoptions(precision=5) A = np.array([[31., -13., 0., 0., 0., -10., 0., ...
- MDP中值函数的求解
MDP概述 马尔科夫决策过程(Markov Decision Process)是强化学习(reinforcement learning)最基本的模型框架.它对序列化的决策过程做了很多限制.比如状态 ...
- 实现求解线性方程(矩阵、高斯消去法)------c++程序设计原理与实践(进阶篇)
步骤: 其中A是一个n*n的系数方阵 向量x和b分别是未知数和常量向量: 这个系统可能有0个.1个或者无穷多个解,这取决于系数矩阵A和向量b.求解线性系统的方法有很多,这里使用一种经典的方法——高斯消 ...
- python实现迭代法求方程组的根
有方程组如下: 迭代法求解x,python代码如下: import numpy as np import matplotlib.pyplot as plt A = np.array([[8, -3, ...
随机推荐
- chmod - 改变文件的访问权限
总揽 chmod [options] mode file... POSIX 选项: [-R] GNU 选项 (最短方式): [-cfvR] [--reference=rfile] [--help] [ ...
- php简单实用的调试工具类
<?php /* * 调试类 */ class Common_Debug { //打开错误报告 public static function showError($debug = true) { ...
- eclipse如何设置多个字符的智能提示
clipse代码里面的代码提示功能默认是关闭的,只有输入“.”的时候才会提示功能,用vs的用户可能不太习惯这种,vs是输入任何字母都会提示,下面说一下如何修改eclipse配置,开启代码自动提示功能打 ...
- 雷林鹏分享:PHP Secure E-mails
在上一节中的 PHP e-mail 脚本中,存在着一个漏洞. PHP E-mail 注入 首先,请看上一章中的 PHP 代码: if (isset($_REQUEST['email'])) { // ...
- Java代码的编译和执行
Java代码编译和执行的整个过程包含了以下三个重要的机制: (1)Java源码编译机制 (2)类加载机制 (3)类执行机制 1.Java代码编译是由Java源码编译器来完成,流程图: Java 源码编 ...
- windows mac配置host方法
配置host方法如下: 1.windows 系统配置host (1)打开电脑的系统盘(一般默认为C盘):C盘 -> Windows -> System32 -> drives -&g ...
- sh与bash执行语法严谨问题
在Linux中,我们知道有几种方式可以运行.sh脚本 通过sh或者bash命令来运行 通过source来运行 通过./xxx.sh来运行(这种方式要求对脚本文件有r和x权限才行) 今天在写脚本的过程中 ...
- mysql多表合并为一张表
有人提出要将4张表合并成一张.数据量比较大,有4千万条数据.有很多重复数据,需要对某一列进行去重. 数据量太大的话,可以看我另外一篇:http://www.cnblogs.com/magmell/p/ ...
- CSS九宫格样式
CSS .main>div { width: 14%; min-width: 160px; padding: 2%; height: 60px; border: 1px solid #f4f4f ...
- reactNative 打包那些事儿
我们项目测试时一般是debug版本,打包上线,一般是release版本,所以在测试和打包时会走不同的方法,如上图所示. 在debug版本中,会走我们本地服务器,也就是自己电脑上的服务.在release ...