刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)
题目:
题目描述
假设有 n 根柱子,现要按下述规则在这 n 根柱子中依次放入编号为 1,2 ,3,… 的球。
(1)每次只能在某根柱子的最上面放球。
(2)在同一根柱子中,任何 2 个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在 n 根柱子上最多能放多少个球。例如,在 4 根柱子上最多放 11 个球。
对于给定的 n,计算在 n 根柱子上最多能放多少个球。
输入格式
输入文件第 1 行有 1 个正整数 n(1<n<60),表示柱子数。
输出格式
输出 n 根柱子上最多能放的球数。
样例数据 1
备注
【样例说明】
最多能放 11 个球,下面 4 行,每行是一根柱子上的球的编号。
1 8
2 7 9
3 6 10
4 5 11
【思考以下输出样式】
将 n 根柱子上最多能放的球数以及相应的放置方案输出到文件中。
文件的第一行是球数。接下来的 n 行,每行是一根柱子上的球的编号。
题解:
首先可以想到这道题的策略肯定是向上枚举球的数量然后判断····
建图方法是:如果对于i<j有i+j为一个完全平方数,连接一条有向边(i,j)。该图是有向无环图,求最小路径覆盖。如果刚好满足最小路径覆盖数等于N,那么A是一个可行解,在所有可行解中找到最大的A,即为最优解。最小路径覆盖相关知识点如下:
有向无环图最小不相交路径覆盖
定义:用最少的不相交路径覆盖所有顶点。
定理:把原图中的每个点V拆成Vx和Vy,如果有一条有向边A->B,那么就加边Ax-By。这样就得到了一个二分图,最小路径覆盖=原图的节点数-新图最大匹配。
简单证明:一开始每个点都独立的为一条路径,总共有n条不相交路径。我们每次在二分图里加一条边就相当于把两条路径合成了一条路径,因为路径之间不能有公共点,所以加的边之间也不能有公共点,这就是匹配的定义。所以有:最小路径覆盖=原图的节点数-新图最大匹配。
因此每次枚举新的点加直接和之前的点枚加边即可···令外每次不用重新在图上跑网络流,记录一个group表示柱子数,和枚举的点数一起加减,然后用group减去新跑的流即可,这样就相当于枚举的点数减去在新图上完全新跑出的流(看不懂的看代码就可以了),即为最小路径覆盖
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int inf=1e+;
const int N=;
int src=,des=;
int group,num,n;
int first[N],next[N*],go[N*],rest[N*],tot=,lev[N],cur[N];
inline void comb(int a,int b,int c)
{
next[++tot]=first[a],first[a]=tot,go[tot]=b,rest[tot]=c;
next[++tot]=first[b],first[b]=tot,go[tot]=a,rest[tot]=;
}
inline bool bfs()
{
for(int i=src;i<=des;i++) cur[i]=first[i],lev[i]=-;
static int que[N],tail,u,v;
que[tail=]=src;
lev[src]=;
for(int head=;head<=tail;head++)
{
u=que[head];
for(int e=first[u];e;e=next[e])
{
if(lev[v=go[e]]==-&&rest[e])
{
lev[v]=lev[u]+;
que[++tail]=v;
if(v==des) return true;
}
}
}
return false;
}
inline int dinic(int u,int flow)
{
if(u==des)
return flow;
int res=,delta,v;
for(int &e=cur[u];e;e=next[e])
{
if(lev[v=go[e]]>lev[u]&&rest[e])
{
delta=dinic(v,min(flow-res,rest[e]));
if(delta)
{
rest[e]-=delta;
rest[e^]+=delta;
res+=delta;
if(res==flow) break;
}
}
}
if(flow!=res) lev[u]=-;
return res;
}
inline void maxflow()
{
while(bfs())
group-=dinic(src,inf);
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&n);
while(true)
{
group++,num++;
for(int i=;i<num;i++)
if(sqrt(i+num)==(int)sqrt(i+num))
comb(i,num+,);
comb(num+,des,);
comb(src,num,);
maxflow();
if(group>n) break;
}
cout<<num-<<endl;
return ;
}
刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)的更多相关文章
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- cogs_396_魔术球问题_(最小路径覆盖+二分图匹配,网络流24题#4)
描述 http://cojs.tk/cogs/problem/problem.php?pid=396 连续从1开始编号的球,按照顺寻一个个放在n个柱子上,\(i\)放在\(j\)上面的必要条件是\(i ...
- LeetCode刷题: 【120】三角形最小路径和
1. 题目: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小 ...
- [Cogs728] [网络流24题#3] 最小路径覆盖 [网络流,最大流,二分图匹配]
建图:源点—>边的起点(集合1中的)—>边的终点(集合2中的)—>汇点,所有边权均为1, 计算最大流,最后枚举起点的出边,边权为0的即为匹配上的, 可以这样理解:每条边表示起点和终点 ...
- hiho# 1394最小路径覆盖 网络流拆点
题目传送门 思路: 观察到路径上除了终点起点以外的每个点出度和入度都为1,和网络流的拆点很像,所以就把每个点都拆成两个点,若存在一条路径$(u,v)$,则建一条$(u,v+n,1)$的边,然后求出最大 ...
- [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 【网络流24题】No.4 魔术球问题 (二分+最小路径覆盖)
[题意] 假设有 n 根柱子, 现要按下述规则在这 n 根柱子中依次放入编号为 1, 2, 3, ¼的球.( 1)每次只能在某根柱子的最上面放球.( 2)在同一根柱子中,任何 2 个相邻球的编号之和为 ...
- Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)
Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...
- LOJ6003 - 「网络流 24 题」魔术球
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...
随机推荐
- IOS小技巧整理
1 随机数的使用 头文件的引用 #import <time.h> #import <mach/mach_time.h> srandom()的使用 ...
- rhythmbox插件开发笔记2:背景知识学习 D-Bus&VFS&Gio& Python GTK+ 3
这次主要简单介绍下相关的背景知识 D-Bus&VFS&Gio& Python GTK+ 3 D-Bus D-Bus是开源的进程通信(IPC)系统,它允许多个进程进行实时通信. ...
- python基础一 day11 装饰器复习
# 复习# 讲作业# 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数# 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 # 装 ...
- 如何在Mac上放大
您是否发现有时自己眯眼盯着屏幕,希望屏幕上的东西只是“大”一点?无论您是否视力差,或只是想放大屏幕来看近景,这是很容易做到,只需要按一些按键.这篇文章将告诉您如何放大看浏览器或桌面的特写. 方法 ...
- Arch Linux 天坑
https://wiki.archlinux.org/index.php/Samba_(%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87) samba gui客户端 smb4 ...
- ubuntu 16.04 安装node.js 8.x
引自 https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-16-04#how-to-in ...
- Jarvis OJ-Level4
借助DynELF实现无libc的漏洞利用小结 #!/usr/bin/env python # coding:utf-8 from pwn import * elf = ELF('level4') wr ...
- STATIC 和 CLASS
STATIC 和 CLASS 由 王巍 (@ONEVCAT) 发布于 2015/01/28 Swift 中表示 “类型范围作用域” 这一概念有两个不同的关键字,它们分别是 static 和 class ...
- 移动网页端HTML5 meta便签
width = device-width:标识宽度是设备屏幕的宽度 initial-scale = 1.0 :标识初始的缩放比例 minimum-scale =0.5 :表示最小的缩放比例 maxim ...
- RN踩坑
使用夜神 使用夜神作为模拟器,这个模拟器启动就会监听62001端口. 开发工具与模拟器的通信都是通过adb.夜神模拟器的安装目录/bin下有一个adb.exe,android sdk tools下也有 ...