Position:


List

Description

  • 大意:有n堆石子,每堆石子个数已知,两人轮流从中取石子,每次可取的石子数x满足x属于集合S(k) = {s1,s2,s3…sk-1},问先拿者是否有必胜策略?
  • 普通Nim取石子游戏但加了一些限制条件,比如每次只能取S={s1,s2,s3……},就把前驱的条件改一下就行。

Knowledge

Sprague-Grundy Function-SG函数–博弈论
博弈论也是最近新学的知识,上面是一个写得很好的博客。
简单脑补:对于公平博弈(一般是NIM游戏),我们有一个重要的工具————就是SG函数。
SG函数的定义:
必败态的sg值为0,其余态的sg值为其后继状态的sg值的mex和。
其中mex和操作(mex{a1,a2,a3,…,ar})的含义是a1,a2,a3,…,ar中最小的没出现过的自然数。
而对于组合游戏(就是由若干个子游戏组合而成,每个子游戏之间状态独立,每次操作任选一个子游戏操作),其sg值为所有子游戏sg值的异或和。如果一个状态求得sg值为0,则为必败态,否则为必胜态。(证明略,大致是因为先手总能通过一步使sg不为0的状态变为0,而sg为0的状态只能变成sg不为0的状态,最后不能操作的状态sg也为0)而一般sg都是打表找规律,常用分析方法:(1) 等差分析(2) 等比分析(3) 特定数值位置分析(4) 奇偶位置分析。对于多组数据都不同就要暴力求,如本题。

Solution

分析:
1.可将问题转化为n个子问题,每个子问题分别为:
从一堆x颗石子中取石子,每次可取的石子数为集合S(k)中的一个数
2.分析(1)中的每个子问题,易得:SG(x)=mex(SG[(x-s[i]>0)])(k>=i>=1)
3.后面就是SG函数的应用,根据Sprague-Grundy Therem:g(G)=g(G1)^g(G2)^g(G3)^…^g(Gn)即游戏的和的SG函数值是它的所有子游戏的SG函数值的异或,即SG(G) = SG(x1)^SG(x2)^…^SG(xn),故若SG(G)=0那么必输。

Notice

memset:①比for快②#include - cstring
map复杂度加一个log,对于加入的数少的情况用,else flag数组。

Code

// <S-Nim.cpp> - 08/03/16 20:18:06
// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <map>
#include <cstdlib>
#include <cmath>
#define MOD 1000000007
#define INF 1e9
#define EPS 1e-10
using namespace std;
typedef long long LL;
const int MAXN=;
const int MAXM=;
inline int max(int &x,int &y) {return x>y?x:y;}
inline int min(int &x,int &y) {return x<y?x:y;}
inline int getint() {
register int w=,q=;register char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-')q=,ch=getchar();
while(ch>=''&&ch<='')w=w*+ch-'',ch=getchar();
return q?-w:w;
}
int n,T,sg[MAXN],m,ans,s[MAXN];
inline int mex(int x){
//map<int,bool>f;
bool f[MAXN];
memset(f,,sizeof(f));//fast <cstring>
int temp;
for(int i=;i<=n;i++){
temp=x-s[i];
if(temp>=){
if(sg[temp]==-)sg[temp]=mex(temp);
f[sg[temp]]=;
}
}
for(int i=;;i++)if(!f[i])return i;
}
inline int SG(int x){
if(sg[x]==-)sg[x]=mex(x);
return sg[x];
}
int main()
{
freopen("S-Nim.in","r",stdin);
freopen("S-Nim.out","w",stdout);
while(n=getint(),n){
for(int i=;i<=n;i++)s[i]=getint();
sg[]=;
for(int i=;i<MAXN;i++)sg[i]=-;
T=getint();
while(T--){
m=getint();ans=;
while(m--)ans^=SG(getint());
if(ans)printf("W");else printf("L");
}
printf("\n");
}
return ;
}

【Poj2960】S-Nim & 博弈论的更多相关文章

  1. (转载)Nim博弈论

    最近补上次参加2019西安邀请赛的题,其中的E题出现了Nim博弈论,今天打算好好看看Nim博弈论,在网上看到这篇总结得超级好的博客,就转载了过来. 转载:https://www.cnblogs.com ...

  2. hdu 3032 Nim or not Nim? 博弈论

     这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...

  3. POJ2960 S-Nim 【博弈论】

    Description Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim ...

  4. POJ2068 Nim 博弈论 dp

    http://poj.org/problem?id=2068 博弈论的动态规划,依然是根据必胜点和必输点的定义,才明白过来博弈论的dp和sg函数差不多完全是两个概念(前者包含后者),sg函数只是mex ...

  5. zoj 3591 Nim 博弈论

    思路:先生成序列再求异或,最多的可能为n*(n+1)/2: 在去掉其中必败的序列,也就是a[i]=a[j]之间的序列. 代码如下: #include<iostream> #include& ...

  6. poj 2068 Nim 博弈论

    思路:dp[i][j]:第i个人时还剩j个石头. 当j为0时,有必胜为1: 后继中有必败态的为必胜态!!记忆化搜索下就可以了! 代码如下: #include<iostream> #incl ...

  7. poj 2975 Nim 博弈论

    令ans=a1^a2^...^an,如果需要构造出异或值为0的数, 而且由于只能操作一堆石子,所以对于某堆石子ai,现在对于ans^ai,就是除了ai以外其他的石子 的异或值,如果ans^ai< ...

  8. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  9. 【BZOJ】4147: [AMPPZ2014]Euclidean Nim

    [算法]博弈论+数论 [题意]给定n个石子,两人轮流操作,规则如下: 轮到先手操作时:若石子数<p添加p个石子,否则拿走p的倍数个石子.记为属性p. 轮到后手操作时:若石子数<q添加q个石 ...

随机推荐

  1. nz-card头部右侧添加东西

    <nz-card [nzBordered]="true" nzTitle="卡片标题" [nzExtra]="extraTemplate1&qu ...

  2. Java基础——异常

    一.什么是异常  异常的英文单词是exception,字面翻译就是“意外.例外”的意思,也就是非正常情况.事实上,异常本质上是程序上的错误,包括程序逻辑错误和系统错误.比如使用空的引用.数组下标越界. ...

  3. Git 分支使用

    一个主分支肯定是不够用的,不同的开发最好放在不同的分支上,在最后进行合并,不然在开发中会相互干扰. PS:环境Window xp,Git-1.8.4-preview20130916(http://gi ...

  4. tarjan求强连通分量模板

    什么是强连通分量? 百度百科 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(stro ...

  5. Java 中 break和 continue 的使用方法及区别

    break break可用于循环和switch...case...语句中. 用于switch...case中: 执行完满足case条件的内容内后结束switch,不执行下面的语句. eg: publi ...

  6. git 安装 使用

    git 安装--------------------------------------yum install git -y git 下载项目----------------------------- ...

  7. CTSC2018 Day2T1 Juice混合果汁

    [题解] 在考场上A掉的题. 把美味度排个序,然后按照价格p为权值建立主席树,把每个果汁按照拍好的顺序添加进去.主席树上维护总升数cnt以及总价格sum.对于每个询问,我们二分一个美味值,check的 ...

  8. 洛谷 3285 [JLOI2014]松鼠的新家

    [题解] 给出一条路径,问树上的点被经过了几次. 显然树剖之后树上差分就好了. #include<cstdio> #include<algorithm> #define N 3 ...

  9. chrome浏览器中解决embed标签 loop="true" 背景音乐无法循环的问题。

    今天试了下在html网页中加入背景音乐并设置为循环播放.一开始用<embed>标签,设置loop="true", 但是结果发现在IE浏览器可以,但是在chrome浏览器 ...

  10. 程序员如何在百忙中更有效地利用时间,如何不走岔路,不白忙(忙得要有效率,要有收获)-----https://www.cnblogs.com/JavaArchitect/p/9080484.html

    https://www.cnblogs.com/JavaArchitect/p/9080484.html 程序员如何在百忙中更有效地利用时间,如何不走岔路,不白忙(忙得要有效率,要有收获)