codeforces 940F 带修改的莫队
4 seconds
512 megabytes
standard input
standard output
You come home and fell some unpleasant smell. Where is it coming from?
You are given an array a. You have to answer the following queries:
- You are given two integers l and r. Let ci be the number of occurrences of i in al: r, where al: r is the subarray of a from l-th element to r-th inclusive. Find the Mex of {c0, c1, ..., c109}
- You are given two integers p to x. Change ap to x.
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.
Note that in this problem all elements of a are positive, which means that c0 = 0 and 0 is never the answer for the query of the second type.
The first line of input contains two integers n and q (1 ≤ n, q ≤ 100 000) — the length of the array and the number of queries respectively.
The second line of input contains n integers — a1, a2, ..., an (1 ≤ ai ≤ 109).
Each of the next q lines describes a single query.
The first type of query is described by three integers ti = 1, li, ri, where 1 ≤ li ≤ ri ≤ n — the bounds of the subarray.
The second type of query is described by three integers ti = 2, pi, xi, where 1 ≤ pi ≤ n is the index of the element, which must be changed and 1 ≤ xi ≤ 109 is the new value.
For each query of the first type output a single integer — the Mex of {c0, c1, ..., c109}.
10 4
1 2 3 1 1 2 2 2 9 9
1 1 1
1 2 8
2 7 1
1 2 8
2
3
2
The subarray of the first query consists of the single element — 1.
The subarray of the second query consists of four 2s, one 3 and two 1s.
The subarray of the fourth query consists of three 1s, three 2s and one 3.
大意:给出一个序列,两种操作。
1.询问一个区间内,把每种元素的个数组成一个集合,这个集合的mex值(不在集合中的最小值)。
2.单点修改。
题解:
莫队算法:
题目给出数值的大小过大,但是实际出现过的最多200000个,离散化,把出现过的数从小到大排列,和1——200000,一一对应。
这样题目中的每个数值都可以用1——200000中的数等价替换。
然后就是带修改的莫队。
其实就是多加了一维时间,三维和二维类比一下,就是先按照左端点分块,再按照右端点分块,块中时间单调。
块的大小需要时n^(2/3),如果还是sqrt(n)会TLE。
因为块的大小是n^(2/3)的时候复杂度最低,通过考虑每种移动方式的复杂度可以证明,详情请移步大神博客:
https://www.luogu.org/blog/user12668/solution-p1903
/*
Welcome Hacking
Wish You High Rating
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<map>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=xx*+ch-'';ch=getchar();}
return xx*ff;
}
const int maxn=;
int N,M,block,a[maxn],b[maxn],belong[maxn];
struct query{
int L,R,tim,id;
bool friend operator<(const query&A,const query&B){
if(belong[A.L]!=belong[B.L])
return A.L<B.L;
if(belong[A.R]!=belong[B.R])
return A.R<B.R;
return A.tim<B.tim;
}
}Q[maxn];
struct change{
int pos,x,y;
}C[maxn];
int tp1,tp2,tp;
int pm[maxn*],arg[][maxn];
map<int,int>mp;
int rk[maxn*],tot;
int cnt[maxn*],siz[maxn],ans[maxn];
int x,y,z;
inline void add(int i){
siz[cnt[i]]--;
siz[++cnt[i]]++;
}
inline void del(int i){
siz[cnt[i]]--;
siz[--cnt[i]]++;
}
inline void change_add(int i){
if(C[i].pos>=x&&C[i].pos<=y){
del(C[i].x);
add(C[i].y);
}
a[C[i].pos]=C[i].y;
}
inline void change_del(int i){
if(C[i].pos>=x&&C[i].pos<=y){
del(C[i].y);
add(C[i].x);
}
a[C[i].pos]=C[i].x;
}
int main(){
//freopen("in.txt","r",stdin);
N=read(),M=read();
for(int i=;i<=N;i++)
pm[++tp]=b[i]=read(); for(int i=;i<=M;i++){
for(int j=;j<=;j++)
arg[j][i]=read();
if(arg[][i]==)
pm[++tp]=arg[][i];
} sort(pm+,pm++tp);
for(int i=;i<=tp;i++)
if(!mp[pm[i]])
mp[pm[i]]=++tot,rk[tot]=pm[i]; for(int i=;i<=N;i++)
a[i]=b[i]=mp[b[i]];
for(int i=;i<=M;i++)
if(arg[][i]==)
arg[][i]=mp[arg[][i]]; for(int i=;i<=M;i++)
if(arg[][i]==)
Q[++tp1].tim=tp2,Q[tp1].L=arg[][i],Q[tp1].R=arg[][i],Q[tp1].id=tp1;
else
C[++tp2].pos=arg[][i],C[tp2].x=b[C[tp2].pos],C[tp2].y=arg[][i],b[C[tp2].pos]=arg[][i]; block=(int)pow(N+0.5,2.0/);//caution for(int i=;i<=N;i++)
belong[i]=(i-)/block+;
sort(Q+,Q++tp1);
x=Q[].L,y=Q[].L-,z=;
for(int i=;i<=tp1;i++){
for(;x<Q[i].L;x++)
del(a[x]);
for(;x>Q[i].L;x--)
add(a[x-]);
for(;y<Q[i].R;y++)
add(a[y+]);
for(;y>Q[i].R;y--)
del(a[y]);
for(;z<Q[i].tim;z++)
change_add(z+);
for(;z>Q[i].tim;z--)
change_del(z); for(int j=;;j++)
if(!siz[j]){
ans[Q[i].id]=j;
break;
}
}
for(int i=;i<=tp1;i++)
printf("%d\n",ans[i]);
return ;
}
codeforces 940F 带修改的莫队的更多相关文章
- Machine Learning CodeForces - 940F (带修改的莫队)
You come home and fell some unpleasant smell. Where is it coming from? You are given an array a. You ...
- BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...
- 【BZOJ】2120: 数颜色 带修改的莫队算法
[题意]给定n个数字,m次操作,每次询问区间不同数字的个数,或修改某个位置的数字.n,m<=10^4,ai<=10^6. [算法]带修改的莫队算法 [题解]对于询问(x,y,t),其中t是 ...
- 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块
题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...
- 【bzoj3052】[wc2013]糖果公园 带修改树上莫队
题目描述 给出一棵n个点的树,每个点有一个点权,点权范围为1~m.支持两种操作:(1)修改一个点的点权 (2)对于一条路径,求$\sum\limits_{i=1}^m\sum\limits_{j=1} ...
- P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队
\(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...
- UOJ 58 (树上带修改的莫队)
UOJ 58 糖果公园 Problem : 给一棵n个点的树,每个点上有一种颜色,对于一条路径上的点,若 i 颜色第 j 次出现对该路径权值的贡献为 w[i] * c[j], 每次询问一条路径的权值, ...
- UVA - 12345 带修改的莫队
题意显然:给出初始序列,单点修改,区间查询元素的种类. 由于时限过宽,暴力可过. 比较优秀的解法应该是莫队. 带修改的莫队题解可以看https://www.luogu.org/blog/user126 ...
- Machine Learning CodeForces - 940F(带修改的莫队)
题解原文地址:https://www.cnblogs.com/lujiaju6555/p/8468709.html 给数组a,有两种操作,1 l r查询[l,r]中每个数出现次数的mex,注意是出现次 ...
随机推荐
- 201621123082《Java程序设计》第1周学习总结
1. 本周学习总结: 关键词: 了解Java语言的发展历史.了解Java语言的特点.JDK.JRE.JVM.eclipse等. 联系: JDK是提供给Java开发人员使用的一组工具,JDK包含JVM及 ...
- 理解ZAB协议
ZAB协议 介绍 1.zab协议是为分布式协调服务zookpeer专门设计的一种支持崩溃恢复的原子广播协议 2.在zookeeper中主要依赖ZAB协议来实现数据一致性,基于该协议zk实现了一种主备模 ...
- 【BZOJ 1003】[ZJOI2006]物流运输(Dijkstra+DP)
题链 http://www.lydsy.com/JudgeOnline/problem.php?id=1003 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n ...
- 变量&字符串
变量 变量定义规范: # 声明变量: name = "Neo Zheng" # name为变量名(标识符),"Neo Zheng"是变量值. 变量定义规则: 1 ...
- 【错误解决】 java.lang.ClassNotFoundException: org.apache.jsp.WEB_002dINF.classes.views.index_jsp
转载请注明出处:http://blog.csdn.net/qq_26525215 本文源自[大学之旅_谙忆的博客] 今天建立Spring MVC骨架的时候,突然遇到这么一个问题~~ HTTP Stat ...
- Linux下汇编语言学习笔记65 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- hdu - 3549 Flow Problem (最大流模板题)
http://acm.hdu.edu.cn/showproblem.php?pid=3549 Ford-Fulkerson算法. #include <iostream> #include ...
- [bzoj4712]洪水_动态dp
洪水 bzoj-4712 题目大意:给定一棵$n$个节点的有根树.每次询问以一棵节点为根的子树内,选取一些节点使得这个被询问的节点包含的叶子节点都有一个父亲被选中,求最小权值.支持单点修改. 注释:$ ...
- P2910 [USACO08OPEN]寻宝之路Clear And Present Danger 洛谷
https://www.luogu.org/problem/show?pid=2910 题目描述 Farmer John is on a boat seeking fabled treasure on ...
- Remove Element(第一种方法参考别人)
Given an array and a value, remove all instances of that value in place and return the new length. T ...