HDU 6441 费马大定理+勾股数
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n")
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl
#define ffread(a) fastIO::read(a)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn=1e6+,inf=0x3f3f3f3f;
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
ll n, a, b, c;
scanf("%lld%lld", &n, &a);
if (n == )
{
printf("%lld %lld\n", , +a);
}
else if (n == )
{
if (a % == )
{
ll tmp = (a-)/;
b = *tmp*tmp+*tmp;
c = b+;
printf("%lld %lld\n", b, c);
}
else
{
ll tmp = a/ - ;
b = tmp*tmp + *tmp;
c = b + ;
printf("%lld %lld\n", b, c);
}
}
else
printf("-1 -1 \n");
}
return ;
}
勾股数https://wenku.baidu.com/view/8282f1b669eae009591bec85.html
HDU 6441 费马大定理+勾股数的更多相关文章
- hdu 6441 (费马大定理+勾股数 数学)
题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...
- hdu 6441 Find Integer(费马大定理+勾股数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6441(本题来源于2018年中国大学生程序设计竞赛网络选拔赛) 题意:输入n和a,求满足等式a^n+b^ ...
- 2015浙工大校赛-Problem C: 三角—— 费马大定理+勾股数
题目 有一个直角三角形三边为 A,B,C 三个整数.已知 C 为最长边长,求一组B,C,使得B和C最接近. (题目链接) 分析 打表找规律. 或者直接一点的枚举 $C-B$ 的值.(既然枚举 B 不现 ...
- HDU - 6441(费马大定理)
链接:HDU - 6441 题意:已知 n,a,求 b,c 使 a^n + b^n = c^n 成立. 题解:费马大定理 1.a^n + b^n = c^n,当 n > 2 时无解: 2. 当 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- hdu6441 Find Integer 求勾股数 费马大定理
题目传送门 题目大意: 给出a和n,求满足的b和c. 思路: 数论题目,没什么好说的. 根据费马大定理,当n>2时不存在正整数解. 当n=0或者1时特判一下就可以了,也就是此时变成了一个求勾股数 ...
- MT【315】勾股数
(高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a ...
- C语言 · 勾股数
勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...
- 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。
证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...
随机推荐
- HTTPS时代已来,你做好准备了吗?
早在今年年初,Google在其安全博客上已经表明,从7月开始,Chrome68会将所有的HTTP网站标记为不安全.随后,Mozilla也表明,Firefox浏览器也准备将所有HTTP网站标记为不安全. ...
- iOS 自己手动添加编译警告
文/青花瓷的平方(简书作者)原文链接:http://www.jianshu.com/p/b2e30cad2a0d著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 缘由 上一次生产环境我们 ...
- 正确使用MySQL JDBC setFetchSize()方法解决JDBC处理大结果
一直很纠结,Oracle的快速返回机制,虽然结果集很多,可是它能很快的显示第一个结果,虽然通过MYSQl的客户端可以做到,但是通过JDBC却不行. 今天用了1个多小时,终于搞定此问题,希望对广大Jav ...
- 【算法】最长回文子串 longest palindrome substring
对于字符串S, 要找到它最长的回文子串,能想到的最暴力方法,应该是对于每个元素i-th都向左向右对称搜索,最后用一个数组span 记录下相对应元素i-th为中心的回文子串长度. 那么问题来了: 1. ...
- centos6上安装mysql8.0版本
本博客是采用yum源的方式安装,非常的方便和快捷.(redhat 与centos7 等操作系统都可以采用此方法,步骤大体一致) mysql官网地址: https://dev.mysql.com 开 ...
- 前端什么是BFC
什么是BFC? 全称块级格式化上下文?什么意思不懂.看了好多博客,基本都是抄的,真心都不是大白话.我今天来总结一下,用菜鸟级别的语言来描述. BFC 应该可以抽象成一个 独立的个体,出淤泥而不染的白莲 ...
- uva1228 Integer Transmission
这道题思维很灵活.也有点套路的意思. 首先规定0,1分别按照原来的顺序接收,只是01换位.这样简化了思维.(否则并不会有更优结果它.,比较好想)最大值和最小值可以贪心得到.那么接下来就是给定一个整数P ...
- centos7 搭建jenkins
centos7 搭建jenkins.note 环境:VMware 虚拟机 centos 7+ jdk 1.8+ tomcat7+jenkins搭建好linux 服务器后,关闭防火墙 停止firewal ...
- python 变量引用
最近在看<<流畅的python>>关于变量引用部分时,有一些自己的看法,就再次记录一下. 问题: # From flunet python example 8-8 class ...
- 35个Redis面试题
1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库 ...