题目描述 Description

在网络通信中,经常需要求最短路径。但完全用最短路径传输有这样一个问题:如果最终在两个终端节点之间给出的最短路径只有一条。则在该路径中的任一个节点或链路出现故障时,信号传输将面临中断的危险。因此,对网络路由选择作了以下改进:

为任意两节点之间通信提供三条路径供其选择,即最短路径、第二最短路径和第三最短路径。

第一最短路径定义为:给定一个不含负回路的网络D={V,A,W},其中V={v1,v2,…,vn},A为边的集合,W为权的集合,设P1是D中最短(v1,vn)路。称P1为D中最短(v1,vn)路径,如果D中有一条(v1,vn)路,P2满足以下条件:

(1)P2≠P1;(2)D中不存在异于P1的路P,使得:

(3)W(P1)≤W(P)<W(P2)

则称P2为D的第二最短路径。

第三最短路径的定义为:设P2是D中第二最短(v1,vn)路径,如果D中有一条(v1,vn)路P3满足以下条件:

(1)P3≠P2并且P3≠P1;(2)D中不存在异于P1,P2的路P,使得:

(3)W(P2)≤W(P)<W(P3)

则称P3为D中第三最短路径。

现给定一有N个节点的网络,N≤30,求给定两点间的第一、第二和第三最短路径。

输入描述 Input Description

输入:  n  S  T  Max   (每格数值之间用空格分隔)

M11  M12  …  M1n

M21  M22  …  M2n

…   …

Mn1  Mn2  …  Mnn

其中,n为节点数,S为起点,T为终点,Max为一代表无穷大的整数,Mij描述I到J的距离,若Mij=Max,则表示从I到J无直接通路,Mii=0。

输出描述 Output Description

输出:三条路径(从小到大输出),每条路径占一行,形式为:路径长度 始点…终点  (中间用一个空格分隔)

样例输入 Sample Input

5  1       5     10000

0         1         3         10000     7

10000     0          1         10000     10000

10000     10000     0         1         4

10000     10000     10000     0        1

10000     1         10000     10000     0

样例输出 Sample Output

4  1  2  3  4  5

5  1  3  4  5

6  1  2  3  5

/*
用Dij搞了半天,没搞出来,然而数据太水,DFS可过
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 35
#define M 300100
using namespace std;
int map[N][N],vis[N],b[N],n,s,t,maxn,cnt;
struct node
{
int dis,tot,step[N];
};node a[M];
void init(int p,int dis)
{
a[++cnt].tot=p-;
a[cnt].dis=dis;
for(int i=;i<p;i++)
a[cnt].step[i]=b[i];
}
void dfs(int x,int p,int dis)
{
if(p==&&x==)
int aa=;
if(x==t)
{
init(p,dis);
return;
}
vis[x]=;
for(int i=;i<=n;i++)
if(!vis[i]&&map[x][i])
{
b[p]=i;
vis[i]=;
dfs(i,p+,dis+map[x][i]);
vis[i]=;
}
}
bool cmp(const node&x,const node&y)
{
if(x.dis<y.dis)return true;
return false;
}
int main()
{
scanf("%d%d%d%d",&n,&s,&t,&maxn);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
scanf("%d",&map[i][j]);
if(map[i][j]==maxn)map[i][j]=;
}
dfs(s,,);
sort(a,a+cnt+,cmp);
printf("%d %d ",a[].dis,s);
for(int i=;i<=a[].tot;i++)
printf("%d ",a[].step[i]);printf("\n");
printf("%d %d ",a[].dis,s);
for(int i=;i<=a[].tot;i++)
printf("%d ",a[].step[i]);printf("\n");
printf("%d %d ",a[].dis,s);
for(int i=;i<=a[].tot;i++)
printf("%d ",a[].step[i]);printf("\n");
}

路由选择(codevs 1062)的更多相关文章

  1. CODEVS 1062 路由选择

    1062 路由选择  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 在网络通信中,经常需要求最短路径.但完全用最短路径传 ...

  2. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  3. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  4. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  5. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  6. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  7. codevs 1228 苹果树 树链剖分讲解

    题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...

  8. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  9. codevs 1052 地鼠游戏

    1052 地鼠游戏 http://codevs.cn/problem/1052/ 题目描述 Description 王钢是一名学习成绩优异的学生,在平时的学习中,他总能利用一切时间认真高效地学习,他不 ...

随机推荐

  1. c#自定义鼠标形状

    更改鼠标指针,需要使用到 Windows API: 1. 添加命名空间的引用: using System.Runtime.InteropServices; using System.Reflectio ...

  2. SpringMvc返回@ResponseBody中文乱码

    使用SpringMvc的@ResponseBody返回指定数据的类型做为http体向外输出,在浏览器里返回的内容里有中文,会出现乱码,项目的编码.tomcat编码等都已设置成utf-8,如下返回的是一 ...

  3. 关于Ubuntu 16.04中E: Could not get lock /var/lib/dpkg/lock - open的三种解决方案

    问题 在Ubuntu中,有时候运用sudo  apt-get install 安装软件时,会出现如下的情况: E: Could not get lock /var/lib/dpkg/lock - op ...

  4. Metinfo 5.3.19管理员密码重置漏洞复现

     Metinfo 5.3.19管理员密码重置漏洞 操作系统:Windows 10专业版   kali linux  网站环境:UPUPW 5.3 使用工具:burpsuite 1.7 beta 漏洞分 ...

  5. LinkdList和ArrayList异同、实现自定义栈

    //.LinkdList和ArrayList异同 //ArrayList以连续的空间进行存储数据 //LinkedList以链表的结构存储数据 //栈 先进后出 最上面是栈顶元素 arrayLiat自 ...

  6. Microsoft Windows Server 部署

    Microsoft Windows Server 部署 多重引导 计算机可以被设置多重引导,即在一台计算机上安装多个操作系统..在安装多重引导的操作系统时,还要注意版本的类型,一般应先安装版本低的,再 ...

  7. 《3+1团队》【Alpha】Scrum meeting 2

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...

  8. python关于入参中,传入的是指针还是引用

    偶然看到别人的代码,发现有的会传入参数之后,做一次copy,试验一下,关于入参中,传入的是指针还是引用先说自己的结论:1.如果传入的是简单的类型,那么传入应该是引用的数值,2.假如传入的是df这种类型 ...

  9. java 数据库(二)

    1.SQL概述 1.什么是SQL(了解): 结构化查询语言,是一种功能齐全的数据库语言.在使用它时,只需要发出“做什么”的命令,“怎么做”是不用使用者考虑的 SQL被美国国家标准局(ANSI)确定为关 ...

  10. 全局/局部变量、宏、const、static、extern

    #pragma mark--全局变量和局部变量 根据变量的作用域,变量可以分为: 一.全局变量 1> 定义:在函数外面定义的变量2> 作用域:从定义变量的那一行开始,一直到文件结尾(能被后 ...