斯坦福《机器学习》Lesson8感想-------1、SMO
从上一篇文章可知支持向量(supervector)就是指的离分隔超平面近期的那些点。整个SVM最须要的步骤是训练分类器。得到alpha,从而得到整个用于数据分类的分隔超平面。支持向量机(super vector machine。SVM)的一般应用流程例如以下:
(1) 收集数据:能够使用随意方法
(2) 准备数据:须要数值型数据
(3) 分析数据:有助于可视化分隔超平面
(4) 训练算法:SVM的大部分时间源自训练。该过程主要实现两个參数的调优
(5) 測试算法:十分简单的计算过程就能够实现
(6) 使用算法:差点儿全部分类问题都能够使用SVM。SVM本身就是一个二类分类器。对多类问题应用SVM须要对代码做一些改动
为了降低SVM的训练时间,提高效率。引入了序列最小化(Sequential Minimal Optimizaton,SMO)算法。SMO算法是将大优化问题分解为多个小优化问题来求解的。
这些小优化问题往往非常easy求解。而且对它们进行顺序求解的结果与将它们作为总体求解的结果一致。
SMO的工作原理是基于Coordinate ascent算法的。
1、 Coordinate ascent
如果优化问题为:
我们依次选择当中一个參数。对这个參数进行优化,会使得W函数增长最快。
用图1能够表示整个过程。
图1
2、 SMO
SMO算法就是在每次循环中选择两个參数进行处理。比Coordinate Ascent里多一个參数。
从上一篇文章可知优化问题表示为:
从(19)式中可知
这样子能够看出。选择出一个參数。不改变其它的參数,这个參数也不会随之改变。因此也就达不到优化的目的。
所以SMO算法就是选择两个參数来进行优化。
将结果用參数取代得
因此能够用图2来表达(20)式
图2
从图2中能够看出。。从(20)式中,能够推导出
因此可知
将作为常数,其余两个參数的优化可表示为
再根据(20)式能够得到,从而根据上一篇文章能够得到分隔超平面用于分类。
斯坦福《机器学习》Lesson8感想-------1、SMO的更多相关文章
- 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 关于Coursera上的斯坦福机器学习课程的编程作业提交问题
学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
- 【机器学习详解】SMO算法剖析(转载)
[机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力 ...
- 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 【原】Coursera—Andrew Ng斯坦福机器学习(0)——课程地址和软件下载
斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提 ...
- 斯坦福机器学习ex1.1(python)
使用的工具:NumPy和Matplotlib NumPy是全书最基础的Python编程库.除了提供一些高级的数学运算机制以外,还具备非常高效的向量和矩阵运算功能.这些对于机器学习的计算任务是尤为重要的 ...
- 斯坦福机器学习视频笔记 Week6 关于机器学习的建议 Advice for Applying Machine Learning
我们将学习如何系统地提升机器学习算法,告诉你学习算法何时做得不好,并描述如何'调试'你的学习算法和提高其性能的“最佳实践”.要优化机器学习算法,需要先了解可以在哪里做最大的改进. 我们将讨论如何理解具 ...
- 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...
随机推荐
- Ionic2/angularJs2中的静态类 PhotoLibrary 调用不上
photoLibrary调用报错:No provider for PhotoLibrary: 在调用相册文件时有用到photolibrary,总有些莫名的报错,3月份的时候这个坑让我不知所措,现在写下 ...
- 对Oracle 、SQL Server、MySQL、PostgreSQL数据库优缺点分析
对Oracle .SQL Server.MySQL.PostgreSQL数据库优缺点分析 Oracle Database Oracle Database,又名Oracle RDBMS,或简称Oracl ...
- POJ_2255_Tree Recovery
Tree Recovery Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12342 Accepted: 7712 De ...
- JAVA程序员面试笔试宝典1
1.为什么Java中有些接口没有任何方法? 这些没有任何方法声明的接口又被称为标识接口,标识接口对于实现它的类没有任何语义上的要求,它仅仅充当一个标识的作用,用来表明它的类属于一个特定的类型. 2.j ...
- Spring框架系列(一)--Spring MVC基础知识
Web项目开发过程中一般都是使用MVC(Model-View-Controller)模式,早先的Struts2到Spring MVC,再到现在Spring Boot,都是相似的思 路.Spring B ...
- HDU5834 Magic boy Bi Luo with his excited tree (树形DP)
题意:一棵树有点权和边权 从每个点出发 走过一条边要花费边权同时可以获得点权 边走几次就算几次花费 点权最多算一次 问每个点能获得的最大价值 题解:好吧 这才叫树形DP入门题 dp[i][0]表示从i ...
- Android 按钮常用点击事件大总结
很多学习Android程序设计的人都会发现每个人对代码的写法都有不同的偏好,比较明显的就是对控件响应事件的写法的不同.因此本文就把这些写法总结一下,比较下各种写法的优劣,希望对大家灵活地选择编码方式可 ...
- time模块,补上之前拉下的作业。
time,时间模块比较重要,但不难学,主要是要学会转换时间格式.计算机的时间都是时间戳.人是看不懂的.写出时间转换的固定格式语句.import time # 首先就是引入时间模块. time.ti ...
- springmvc学习及源码地址
http://jinnianshilongnian.iteye.com/blog/1634096
- 第一章 React新的前端思维方式
---恢复内容开始--- 第一章 React新的前端思维方式 1.1 初始化一个React项目 1.安装create-react-app npm install --global create-rea ...