spoj GCJ1C09C Bribe the Prisoners
题目链接:
http://www.spoj.com/problems/GCJ1C09C/
题意:
In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. Cells number i and i+1 are adjacent, and prisoners in adjacent cells are called "neighbours." A wall with a window separates adjacent cells, and neighbours can communicate through that window.
All prisoners live in peace until a prisoner is released. When that happens, the released prisoner's neighbours find out, and each communicates this to his other neighbour. That prisoner passes it on to his other neighbour, and so on until they reach a prisoner with no other neighbour (because he is in cell 1, or in cell P, or the other adjacent cell is empty). A prisoner who discovers that another prisoner has been released will angrily break everything in his cell, unless he is bribed with a gold coin. So, after releasing a prisoner in cell A, all prisoners housed on either side of cell A - until cell 1, cell P or an empty cell - need to be bribed.
Assume that each prison cell is initially occupied by exactly one prisoner, and that only one prisoner can be released per day. Given the list of Q prisoners to be released in Q days, find the minimum total number of gold coins needed as bribes if the prisoners may be released in any order.
Note that each bribe only has an effect for one day. If a prisoner who was bribed yesterday hears about another released prisoner today, then he needs to be bribed again.
Input
The first line of input gives the number of cases, N. N test cases follow. Each case consists of 2 lines. The first line is formatted as
P Q
where P is the number of prison cells and Q is the number of prisoners to be released.
This will be followed by a line with Q distinct cell numbers (of the prisoners to be released), space separated, sorted in ascending order.
Output
For each test case, output one line in the format
Case #X: C
where X is the case number, starting from 1, and C is the minimum number of gold coins needed as bribes.
Limits
1 ≤ N ≤ 100
Q ≤ P
Each cell number is between 1 and P, inclusive.
Large dataset
1 ≤ P ≤ 10000
1 ≤ Q ≤ 100
Sample
Input
2
8 1
3
20 3
3 6 14
Output
Case #1: 7
Case #2: 35
Note
In the second sample case, you first release the person in cell 14, then cell 6, then cell 3. The number of gold coins needed is 19 + 12 + 4 = 35. If you instead release the person in cell 6 first, the cost will be 19 + 4 + 13 = 36.
思路:
dp。
实现:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; const int MAXP = , MAXQ = , INF= 0x3f3f3f3f;
int n, p, q, a[MAXP + ], dp[MAXQ + ][MAXQ + ]; int solve()
{
memset(dp, , sizeof(dp));
a[] = ;
a[q + ] = p + ;
for (int j = ; j <= q + ; j++)
{
for (int i = ; i <= q + - j; i++)
{
dp[i][i + j] = INF;
for (int k = i + ; k < i + j; k++)
dp[i][i + j] = min(dp[i][i + j], dp[i][k] + dp[k][i + j]);
dp[i][i + j] += a[i + j] - a[i] - ;
}
}
return dp[][q + ];
} int main()
{
cin >> n;
for (int t = ; t <= n; t++)
{
cin >> p >> q;
for (int i = ; i <= q; i++)
{
scanf("%d", &a[i]);
}
cout << "Case #" << t << ": " << solve() << endl;
}
return ;
}
spoj GCJ1C09C Bribe the Prisoners的更多相关文章
- GCJ1C09C - Bribe the Prisoners
GCJ1C09C - Bribe the Prisoners Problem In a kingdom there are prison cells (numbered 1 to P) built t ...
- Bribe the Prisoners SPOJ - GCJ1C09C
Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...
- Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)
Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...
- 贿赂囚犯 Bribe the prisoners ( 动态规划+剪枝)
一个监狱里有P个并排着的牢房,从左往右一次编号为1,2,-,P.最初所有牢房里面都住着一个囚犯.现在要释放一些囚犯.如果释放某个牢房里的囚犯,必须要贿赂两边所有的囚犯一个金币,直到监狱的两端或者空牢房 ...
- GCJ Round 1C 2009 Problem C. Bribe the Prisoners
区间DP.dp[i][j]表示第i到第j个全部释放最小费用. #include<cstdio> #include<cstring> #include<cmath> ...
- spoj14846 Bribe the Prisoners
看来我还是太菜了,这么一道破题做了那么长时间...... 传送门 分析 我首先想到的是用状压dp来转移每一个人是否放走的状态,但是发现复杂度远远不够.于是我们考虑区间dp,dpij表示i到j区间的所有 ...
- ProgrammingContestChallengeBook
POJ 1852 Ants POJ 2386 Lake Counting POJ 1979 Red and Black AOJ 0118 Property Distribution AOJ 0333 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
随机推荐
- linux下自动创建设备文件节点---class
在驱动模块初始化函数中实现设备节点的自动创建 我们在刚开始写Linux设备驱动程序的时候,很多时候都是利用mknod命令手动创建设备节点,实际上Linux内核为我们提供了一组函数,可以用来在模块加载的 ...
- xunit输出output到控制台
1.https://xunit.github.io/docs/capturing-output 里面似乎提到2个方法,第二个方法还需要在配置文件中添加appSetting 这里采用第一种方法, 1.添 ...
- 格式化磁盘,提示 is apparently in use by the system
一般是被mdadm占用着. 使用 cat /proc/mdstat 查看所有 找到欲格式化盘符号. 使用 mdadm --stop /dev/md0 mdadm --remove /dev/md0 ...
- Java中的switch语句
switch可以替代if..else..,另外据说switch采用二分搜索,效率会更高一点. switch(type) { case 1 : type_name="INCOMING" ...
- 修改RedHat的系统显示时间
1.修改日期 date -s 12/21/2012 2.修改时间 date -s 15:14:00 3.检查硬件(CMOS)时间 clock -r 4.将系统时间写入CMOS clock -w 切记四 ...
- this关键字在继承中的使用
参考:http://blog.csdn.net/gxzzxj/article/details/51946144 下面是自己的代码: public class ChildA extends Father ...
- 任务34:Cookie-based认证实现
任务34:Cookie-based认证实现 用mvc来实现以下Cookie-Base的认证和授权的方式 新建一个web MVC的项目 在我的电脑的路径:D:\MyDemos\jesse Ctrl+鼠标 ...
- ccflow_005.请假流程-傻瓜表单-审核组件模式
ccflow_005.请假流程-傻瓜表单-审核组件模式 ' 用审核组件演示各个流程应用 首先设置节点,填写请假单的 表单方案.选择内置傻瓜表单.我们之前创建的表单就回来了. 可以点击下面的设计傻瓜表单 ...
- float以后设置的小细节
先看看下面这段css代码,是不是很完美?没错? #pageBodyMain .articleList a: after { content: ""; clear: both; di ...
- Thrift 入门
1下载 https://thrift.apache.org/download 或 Apache Thrift Archive 下载编译好的release可执行文件: Thrift compiler f ...