bzoj 4596
4596: [Shoi2016]黑暗前的幻想乡
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 257 Solved: 152
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
Sample Output
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define N 30
#define mod 1000000007
struct edge
{
int u[],v[],size;
}x[N];
int n;
ll ans;
ll a[N][N],d[N][N],g[N][N];
ll gauss()
{
ll f=,ret=;
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
{
ll A=g[i][i],B=g[j][i];
while(B)
{
ll t=A/B; A%=B; swap(A,B);
for(int k=i;k<=n;++k)
g[i][k]=((g[i][k]-t*g[j][k]%mod)%mod+mod)%mod;
for(int k=i;k<=n;++k) swap(g[i][k],g[j][k]);
f=-f;
}
}
if(!a[i][i]) return ;
}
for(int i=;i<=n;++i) ret=ret*g[i][i]%mod;
ret=(ret*f%mod+mod)%mod;
return ret;
}
void solve()
{
for(int i=;i<<<n;++i)
{
memset(a,,sizeof(a));
memset(g,,sizeof(g));
memset(d,,sizeof(d));
int tot=;
for(int j=;j<=n;++j) if(i&(<<(j-)))
{
++tot;
for(int k=;k<=x[j].size;++k)
{
int u=x[j].u[k],v=x[j].v[k];
a[u][u]++; a[v][v]++;
d[u][v]++; d[v][u]++;
}
}
for(int j=;j<=n;++j)
for(int k=;k<=n;++k) g[j][k]=a[j][k]-d[j][k];
if(n%==tot%) ans+=gauss();
else ans-=gauss();
ans=(ans%mod+mod)%mod;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
}
int main()
{
scanf("%d",&n);
--n;
for(int i=;i<=n;++i)
{
scanf("%d",&x[i].size);
for(int j=;j<=x[i].size;++j) scanf("%d%d",&x[i].u[j],&x[i].v[j]);
}
// if(!n)
// {
// puts("1");
// return 0;
// }
solve();
return ;
}
bzoj 4596的更多相关文章
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- 【Learning】矩阵树定理 Matrix-Tree
矩阵树定理 Matrix Tree 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...
- 生成树计数及应用 Matrix-Tree
例:给定一个图,图上每条边是红色或蓝色 求恰好有K条红边的生成树的个数,N<=50. Matrix-Tree定理 对于限制条件可以利用多项式,把红边边权设为X,蓝边边权设为1. 最后求行列式得到 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- spring security3.1升级到4.1问题(1)访问/j_spring_security_check 404
升级完后,发现登录不进去,把post改成get好了,但是系统的提交表单功能都不能用了,也是解决了很长时间,最后找到了根本原因. spring sercurity 4.0 csrf保护是默认开启的,cs ...
- 【ZJOI2017 Round1练习】D2T3 counter(线段树)
题意: 思路: 预处理出b[i]代表i位置之前比a[i]小的数的个数 以每个数为结尾的组数是线段树中(1,a[i]-1) 对于a[i]换到最后,相当于线段树中(a[i]+1,n)-- 交换后b[i]又 ...
- UVA 11806 组合数学+容斥
UVA: https://vjudge.net/problem/UVA-11806 AC代码 #include <bits/stdc++.h> #define pb push_back # ...
- Java中long(Long)与int(Integer)之间的转换(转)
一.将long型转化为int型,这里的long型是基础类型: long a = 10; int b = (int)a; 二.将Long型转换为int型,这里的Long型是包装类型: Long a = ...
- 我在使用eclipse配置Tomcat服务器的时候发现,默认情况下Tocmat把我们部署的项目放在了workspaces下面,而不是像Myeclipse默认的那样放在tomcat的安装路径下。
1.我在使用eclipse配置Tomcat服务器的时候发现,默认情况下Tocmat把我们部署的项目放在了workspaces下面,而不是像Myeclipse默认的那样放在tomcat的安装路径下. 2 ...
- Jinja2如何默认将None 值显示为空字符串?
在Jinja模板中 {% if User %} {{ User.name }} {% endif %} 可以简化为下面的写法,同时,保证返回值为空,而不是显示为“None” {{ User.name ...
- int&boolean——Java和C的一点小差别
Java和C的差别非常多.只是预计这一点非常多人都不知道. 今天面试时碰到这么道C语言题 求执行结果 int x = -1; while(!x!=0){ cout<<x<<en ...
- mysql最新版中文参考手册在线浏览
MySQL是最流行的开放源码SQL数据库管理系统,具有快速.可靠和易于使用的特点.同时MySQL也是一种关联数据库管理系统,具有很高的响应速度和灵活性.又因为mysql拥有良好的连通性.速度和安全性, ...
- Boost中的Timer的使用——计算时间流逝
使用Boost中的Timer库计算程序的运行时间 程序开发人员都会面临一个共同的问题,即写出高质量的代码完毕特定的功能.评价代码质量的一个重要标准就是算法的运行效率,也就是算法的运行时间.为了可靠的提 ...
- linux document and directory find
http://suchalin.blog.163.com/blog/static/55304677201062924959497/ Linux 查看文件夹大小及文件数量命令 2010-07-29 14 ...