玄学计数

LYY Orz

第一次见这种神奇的计数方式,乍一看非常不靠谱但是仔细想想还卡不掉

就是把在建图的时候把正权变成w*10000-1,负权变成w*10000+1,跑最大权闭合子图。后面的1作用是计数,因为在最大权闭合子图中划到s点一侧的代表选,这样一来,后四位就是起了计数作用。sum初始统计的个数就是所有正权点,然后dinic中割掉一个正权点的边即相当于在最终答案的后四位+1,也就是点数-1

然后考虑收益相同的方案,点数多的后四位一定小,而当前求得又是最小割,所以会选割掉点数少的,也就是留下员工多的方案数。

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const long long N=5005,inf=1e18;
long long n,m,s,t,h[N],cnt=1,le[N],sum;
struct qwe
{
long long ne,to,va;
}e[N*100];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(long long u,long long v,long long w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<long long>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
long long u=q.front();
q.pop();
for(long long i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
long long dfs(long long u,long long f)
{
if(u==t||!f)
return f;
long long us=0;
for(long long i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
long long t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
long long dinic()
{
long long re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
n=read(),m=read();
t=n+1;
for(long long i=1;i<=n;i++)
{
long long x=read();
if(x>0)
ins(s,i,x*10000ll-1ll),sum+=x*10000ll-1ll;
else
ins(i,t,x*-10000ll+1ll);
}
for(long long i=1;i<=m;i++)
{
long long x=read(),y=read();
ins(x,y,inf);
}//cout<<dinic()<<endl;
sum-=dinic();
long long x1=0;
while(sum%10000ll)
sum++,x1++;
printf("%lld %lld\n",x1,sum/10000ll);
return 0;
}

BFS

建图和最大收益都按照最大权闭合子图的套路来,求出第二问。

然后从s开始BFS,只走没有满流的边,最后能走到的最多点数就是第一问的答案。记得会爆int

证明:

最小割模型中,一条边没有“割掉一半”的说法。即:流满的边才有可能作为最小割中的割边如果只流了一半的边也加入了割集,则一定产生了“浪费”,因此没被流满的边一定是不能被割的。bfs到碰到流满的边就停下来一定能得到最大的s侧集合

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
using namespace std;
const long long N=5005,inf=1e9;
long long n,m,s,t,h[N],cnt=1,le[N],sum,con;
bool vis[N];
struct qwe
{
long long ne,to,va;
}e[N*100];
struct po
{
long long u,v,i;
}now;
vector<po>vec;
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(long long u,long long v,long long w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
now.u=u,now.v=v,now.i=cnt;
vec.push_back(now);
add(v,u,0);
}
bool bfs()
{
queue<long long>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
long long u=q.front();
q.pop();
for(long long i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
long long dfs(long long u,long long f)
{
if(u==t||!f)
return f;
long long us=0;
for(long long i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
long long t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
long long dinic()
{
long long re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
n=read(),m=read();
t=n+1;
for(long long i=1;i<=n;i++)
{
long long x=read();
if(x>0)
ins(s,i,x),sum+=x;
else
ins(i,t,-x);
}
for(long long i=1;i<=m;i++)
{
long long x=read(),y=read();
ins(x,y,inf);
}
sum-=dinic();
memset(le,0,sizeof(le));
queue<long long>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
long long u=q.front();
q.pop();
for(long long i=h[u];i;i=e[i].ne)
if(!le[e[i].to]&&e[i].va>0)
{
con++;
le[e[i].to]=1;
q.push(e[i].to);
}
}
printf("%lld %lld\n",con,sum);
return 0;
}

poj 2987 Firing【最大权闭合子图+玄学计数 || BFS】的更多相关文章

  1. POJ 2987 - Firing - [最大权闭合子图]

    题目链接:http://poj.org/problem?id=2987 Time Limit: 5000MS Memory Limit: 131072K Description You’ve fina ...

  2. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  3. POJ 2987 Firing | 最大权闭合团

    一个点带权的图,有一些指向关系,删掉一个点他指向的点也不能留下,问子图最大权值 题解: 这是最大权闭合团问题 闭合团:集合内所有点出边指向的点都在集合内 构图方法 1.S到权值为正的点,容量为权值 2 ...

  4. poj2987 Firing 最大权闭合子图 边权有正有负

    /** 题目:poj2987 Firing 最大权闭合子图 边权有正有负 链接:http://poj.org/problem?id=2987 题意:由于金融危机,公司要裁员,如果裁了员工x,那么x的下 ...

  5. 【POJ 2987】Firing (最小割-最大权闭合子图)

    裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...

  6. 2018.06.27Firing(最大权闭合子图)

    Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 11558 Accepted: 3494 Description ...

  7. 【xsy2193】Wallace 最大权闭合子图

    题目大意:给你一棵$n$个节点的树$a$,每个点有一个点权$val_i$,同时给你另一棵$n$个节点的树$b$. 现在你需要在树$a$上找一个联通块,满足这些点在树$b$上也是连通的,同时树$a$的这 ...

  8. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  9. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

随机推荐

  1. hdu6080(最小环)

    题目 http://acm.hdu.edu.cn/showproblem.php?pid=6080 分析 很妙的思路,将里面的点集当作A,将外面的点集当作B 然后O(n^2)枚举两两B点,设一个是u, ...

  2. linux是类unix操作系统

    linux是类unix操作系统,linux与unix使用的基础命令是一样的,没有区别.Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程 ...

  3. [Bash] Find Files and Folders with `find` in Bash

    find is a powerful tool that can not only find files but it can run a command on each matching file ...

  4. Scrum 常见错误实践 之 形式化的站会

    站会作为一个团队最容易实施的敏捷实践,为广大team leader和老板们所喜欢,但大部分程序员却很抵触.其主要原因就是很多时候站会都流于形式,没能帮助团队成员解决问题.改进效率. 一种常见的情况就是 ...

  5. win7下装ubuntu双系统后无法进入win7的解决方法

    本来电脑的系统是win7,然后用u盘装了ubuntu之后可能会出现开机没有引导界面而直接进入ubuntu系统的情况. 原因:没有设置gurb引导 解决方法:需要更新gurb来使ubuntu识别出win ...

  6. CSS 相对|绝对(relative/absolute)定位系列(一)

    一.有话要说 以前写内容基本上都是:眼睛一亮——哟呵,这个不错,写!然后去古人所说的茅房里蹲会儿,就有写作的思路了.但是,构思相对/绝对(relative/absolute)定位系列却有好些时日,考虑 ...

  7. Windows驱动程序开发基础(四)驱动的编译调试和安装

    Windows驱动程序开发基础,转载标明出处:http://blog.csdn.net/ikerpeng/article/details/38793995 以下说一下开发出来驱动程序以后怎样编译.一般 ...

  8. C项目实践--俄罗斯方块(1)

    俄罗斯方块游戏是由前苏联科学院计算机中心的工程师阿列克谢.帕基特诺夫发明的一款小游戏. 1.功能需求分析 1.1主要功能 实现三个功能:1.游戏欢迎界面:2.游戏执行功能,包括计算得分:3.游戏结束界 ...

  9. Restrictions.or多个条件用法

    两个条件或查询: Restrictions.or(Restrictions.in("username",list1),Restrictions.idEq(1)); 三个或多个条件查 ...

  10. js事件绑定/监听

    事件绑定/监听的方法 1.直接绑定 顾名思义,直接在DOM元素上绑定onclick.onmouseover.onmouseout.onmousedown.onmouseup.ondblclick.on ...