题目背景

迷宫 【问题描述】

给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和

终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫

中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

输入样例 输出样例

【数据规模】

1≤N,M≤5

题目描述

输入输出格式

输入格式:

【输入】

第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点

坐标FX,FY。接下来T行,每行为障碍点的坐标。

输出格式:

【输出】

给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方

案总数。

AC代码1

首先判断下一步是否可以走,可以走则进行递归,并标记已选(即标记下一步),递归结束后还原标记。这个思路有坑的地方在于开始位置已经选择不可以再次递归,但是一开始容易忽略。其次,棋盘的定义也是花了我不少时间,因为输入n*m是行和列,所以行最小是1,数组的最大值应为n+1,对应的m也一样

#include<cstdio>
#include<cmath> using namespace std;
int row1, row2, barrier;
int startx, starty, endx, endy;
int area[6][6] = {0};
int ans = 0; void dfs(int x = startx, int y = starty) {
if (x == endx && y == endy) {
ans++;
return;
}
//往上走
if (y < row2 && area[x][y + 1] != 1) {
area[x][y + 1] = 1;
dfs(x, y + 1);
area[x][y + 1] = 0;
}
//往下走
if (y > 1&& area[x][y - 1] != 1) {
area[x][y - 1] = 1;
dfs(x, y - 1);
area[x][y - 1] = 0;
}
//往右走
if (x < row1&& area[x+1][y] != 1) {
area[x+1][y] = 1;
dfs(x + 1, y);
area[x+1][y] = 0;
}
//往左走
if (x > 1 && area[x-1][y] != 1) {
area[x-1][y] = 1;
dfs(x - 1, y);
area[x-1][y] = 0;
}
}
int main() {
scanf("%d%d%d", &row1, &row2, &barrier);
scanf("%d%d%d%d", &startx, &starty, &endx, &endy);
while (barrier > 0) {
int x, y;
scanf("%d%d", &x, &y);
area[x][y] = 1;
barrier--;
}
area[startx][starty] = 1;
dfs();
printf("%d", ans);
return 0;
}

优化

1 在四个方向上递归如果简单写的话,可以利用int xs[4] = {-1, 1, 0, 0}; 的方式。可有可无

2 下面这种解法从当前位置开始标记,结束条件是数组越界(索引大于行数和列数)或者访问到结束的结点

#include<cstdio>
#include<cmath>
using namespace std;
int row1, row2, barrier;
int startx, starty, endx, endy;
int area[6][6] = {0};
int ans = 0;
int xs[4] = {-1, 1, 0, 0};
int ys[4] = {0, 0, -1, 1};
void dfs(int x = startx, int y = starty) {
if (y < 1 || y > row2 || x < 1 || x > row1)
return;
if (x == endx && y == endy) {
ans++;
return;
}
area[x][y] = 1;
for (int i = 0; i < 4; ++i) {
if (area[x + xs[i]][y + ys[i]] != 1) {
dfs(x+xs[i], y + ys[i]);
}
}
area[x][y] = 0;
}
int main() {
// freopen("E:/下载/testdata (4).in","r",stdin);
scanf("%d%d%d", &row1, &row2, &barrier);
scanf("%d%d%d%d", &startx, &starty, &endx, &endy);
while (barrier > 0) {
int x, y;
scanf("%d%d", &x, &y);
area[x][y] = 1;
barrier--;
}
dfs();
printf("%d", ans);
return 0;
}

搜索--P1605 迷宫的更多相关文章

  1. 洛谷 P1605 迷宫

    题目链接 https://www.luogu.org/problemnew/show/P1605 题目背景 迷宫 题目描述 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 ...

  2. P1605 迷宫

    P1605 迷宫 这是一道毒瘤题... 这是一道广搜题 bfs ... 代码: #include<cstdio> #include<iostream> #include< ...

  3. 洛谷—— P1605 迷宫

    P1605 迷宫 题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在 ...

  4. 【搜索1】P1605 迷宫

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  5. 洛谷P1605 迷宫 深度搜索 模板!

    题目背景 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫中移动有上下左右四种方式,每次只能移 ...

  6. (DFS)P1605 迷宫 洛谷

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  7. 广度优先搜索--POJ迷宫问题

    Description 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, ...

  8. P1605 迷宫(洛谷)

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫中移动有上下左右 ...

  9. P1605迷宫

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

随机推荐

  1. 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?——我自己是因为data有nan的坏数据,clear下解决

    from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入n ...

  2. luogu3942将军令

    https://www.zybuluo.com/ysner/note/1302132 题面 在大小为\(n\)的树上选择尽量少的点,使得所有未选择的点距离选择了的点小于等于\(k\). \(n\leq ...

  3. 51Nod 1443 路径和树 —— dijkstra

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 首先要得到一个最短路树: 注意边权和最小,因为在最短路中,每 ...

  4. bzoj4873

    http://www.lydsy.com/JudgeOnline/problem.php?id=4873 最大权闭合子图... 建图: 1.d[i][j]:i->j区间的费用,d[i][j] & ...

  5. openssh常用命令记录

    command description date ssh [user@]hostname[:port] 登录远程机器 2017-03-21 scp <local_file> <use ...

  6. SQL 设置登录名和密码

    1.打开SQL Server Manager管理器,在左面找到 ‘安全性’ 单击右键 选择‘新建”->“登录”, 如下图 2.弹出对话框,在登录名中输入你的登录号,选择'SQLSERVER身份验 ...

  7. knockout jquery警告删除

    //触发删除的动作                $("a.delete").live('click', function () {                    var ...

  8. Python之列表生成式、生成器

    列表生成式 ——可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁: >>> [x * x for x in range(1, 11)] [1, 4, ...

  9. 【LeetCode】LeetCode Weekly Contest 16B

    2.一个游戏 YouTube MIT 算法课上有详细的讲解 思路是DP. 话说MIT OpenCourseWare 真心不错.应该好好看看,讲的详细生动. Tips: 1.当n是偶数的时候,首先的选择 ...

  10. [ Luogu 4626 ] 一道水题 II

    \(\\\) \(Description\) 求一个能被\([1,n]\) 内所有数整除的最小数字,并对 \(100000007\) 取模 \(N\in [1,10^8]\) \(\\\) \(Sol ...