3144: [Hnoi2013]切糕

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1526  Solved: 827
[Submit][Status][Discuss]

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

Source

经典最小割模型

题面简化为,一个矩阵,每个格子分配一个数,不同的数字,代价不同,要求相邻格子数字差小等于d

求最小代价

每个格子拆出40个点

连同S与T用40种代价串起来

即 p(x,y,z)->p(x,y,z+1)边权f(x,y,z+1)

然后 p(x,y,z)->p(x’,y’,z-d)边权inf (x,y)与(x’,y’)相邻

把边画出来正确性很显然

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int read(){
register int x=;bool f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=;
const int M=N*N*N;
const int inf=2e9;
int n,m,S,T,head[M],dis[M],q[M*];
bool vis[M];
int P,Q,R,D,mp[N][N][N],id[N][N][N],cnt;
struct node{
int v,next,cap;
}e[M*];int tot=;
void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].next=head[y];head[y]=tot;
}
bool bfs(){
for(int i=S;i<=T;i++) dis[i]=inf;
int h=,t=;q[t]=S;dis[S]=;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&dis[v]>dis[x]+){
dis[v]=dis[x]+;
if(v==T) return ;
q[++t]=v;
}
}
}
return dis[T]<inf;
}
int dfs(int x,int f){
if(x==T) return f;
int used=,t;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&dis[v]==dis[x]+){
t=dfs(v,min(f,e[i].cap));
e[i].cap-=t;e[i^].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=;
return used;
}
int dinic(){
int res=;
while(bfs()) res+=dfs(S,inf);
return res;
}
int main(){
scanf("%d%d%d%d",&P,&Q,&R,&D);
for(int i=;i<=R;i++){
for(int j=;j<=P;j++){
for(int k=;k<=Q;k++){
scanf("%d",&mp[i][j][k]);
id[i][j][k]=++cnt;
}
}
}
S=,T=cnt+;
for(int i=;i<=R;i++){
for(int j=;j<=P;j++){
for(int k=;k<=Q;k++){
if(i==)
add(S,id[i][j][k],mp[i][j][k]);
else
add(id[i-][j][k],id[i][j][k],mp[i][j][k]);
if(i==R)
add(id[i][j][k],T,inf);
if(i>D){
if(j!=) add(id[i][j][k],id[i-D][j-][k],inf);
if(j!=P) add(id[i][j][k],id[i-D][j+][k],inf);
if(k!=) add(id[i][j][k],id[i-D][j][k-],inf);
if(k!=Q) add(id[i][j][k],id[i-D][j][k+],inf);
}
}
}
}
printf("%d",dinic());
return ;
}

3144: [Hnoi2013]切糕的更多相关文章

  1. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  2. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  3. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

  4. 3144:[HNOI2013]切糕 - BZOJ

    题目描述 Description 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你 ...

  5. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  6. ●BOZJ 3144 [Hnoi2013]切糕

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3144 题解: "这是一个经典的最小割模型" ---引用自别人的博客 .. ...

  7. 【BZOJ】3144: [Hnoi2013]切糕

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3144 MDZZ,不知道为什么被卡常数了/TAT(特判才过去的....论vector的危害性 ...

  8. 【刷题】BZOJ 3144 [Hnoi2013]切糕

    Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x, ...

  9. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

随机推荐

  1. Linux(11):期中架构(3)--- SSH远程管理服务 & ansible 批量管理服务

    SSH远程管理服务 1. 远程管理服务知识介绍 # 1.1 SSH远程登录服务介绍说明 SSH是Secure Shell Protocol的简写,由 IETF 网络工作小组(Network Worki ...

  2. Codevs 2801 LOL盖伦的蹲草计划

    题目描述 Description 众所周知,LOL这款伟大的游戏,有个叫盖伦的英雄.他的伟大之处在于他特别喜欢蹲草丛阴人(XL:蹲草阴人也算英雄?!CZQ:没办法,个个都是这么玩的).某日,德玛西亚与 ...

  3. 星球大战 BZOJ 1015

    星球大战 [问题描述] 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过 ...

  4. java多线程编程核心技术学习-1

    实现多线程的两种方式 继承Thread类,重写Thread类中的run方法 public class MyThread extends Thread{ @Override public void ru ...

  5. Android 网络编程之HttpURLConnection运用

    Android 网络编程之HttpURLConnection 利用HttpURLConnection对象,我们可以从网络中获取网页数据. 01 URL url = new URL("http ...

  6. codeforces Gym 101572 I 有向图最小环路径

    题目链接 http://codeforces.com/gym/101572 题意  一共n个文件  存在依赖关系 根据给出的依赖关系   判断是否存在循环依赖 ,不存在的话输出SHIP IT,存在的话 ...

  7. Codeforces 959 D Mahmoud and Ehab and another array construction task

    Discription Mahmoud has an array a consisting of n integers. He asked Ehab to find another arrayb of ...

  8. 5.Longest Palindrome substring

    /* * 5.Longest Palindrome substring * 2016-4-9 by Mingyang 自然而然的想到用dp来做 * 刚开始自己做的时候分的条件太细,两个index相等, ...

  9. 简化LINUX的命令输入 简化linux命令 快捷键 短路径

    在LINUX中,有很多常用的命令,常用的命令我们可以熟练的记忆,但是对于不经常使用的命令恐怕是需要翻阅手册了,但是我们可以简化这些命令的输入来达到简便记忆的效果. 这里以BSH为例: 编辑/etc/b ...

  10. ssh 卡主

    偶尔会遇到这样的现象 ssh 登录一台远程机器,显示下面的信息然后hang在那 Connecting to 192.168.137.102:22... Connection established. ...