http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html

1、概念

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

   在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

(1)针对所给问题,确定问题的解空间:

首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

(2)确定结点的扩展搜索规则

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法框架

(1)问题框架

设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

(2)非递归回溯框架

   1: int a[n],i;
   2: 初始化数组a[];
   3: i = 1;
   4: while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
   5: {
   6:     if(i > n)                                              // 搜索到叶结点
   7:     {   
   8:           搜索到一个解,输出;
   9:     }
  10:     else                                                   // 处理第i个元素
  11:     { 
  12:           a[i]第一个可能的值;
  13:           while(a[i]在不满足约束条件且在搜索空间内)
  14:           {
  15:               a[i]下一个可能的值;
  16:           }
  17:           if(a[i]在搜索空间内)
  18:          {
  19:               标识占用的资源;
  20:               i = i+1;                              // 扩展下一个结点
  21:          }
  22:          else 
  23:         {
  24:               清理所占的状态空间;            // 回溯
  25:               i = i –1; 
  26:          }
  27: }

(3)递归的算法框架

回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

   1: int a[n];
   2: try(int i)
   3: {
   4:     if(i>n)
   5:        输出结果;
   6:      else
   7:     {
   8:        for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径
   9:        {
  10:            if(fun(j))                 // 满足限界函数和约束条件
  11:              {
  12:                 a[i] = j;
  13:               ...                         // 其他操作
  14:                 try(i+1);
  15:               回溯前的清理工作(如a[i]置空值等);
  16:               }
  17:          }
  18:      }
  19: }
 

五大常用算法之四:回溯法[zz]的更多相关文章

  1. (java)五大常用算法

    算法一:分治法 基本概念 1.把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并. 2.分治策略是对于一个 ...

  2. 算法之--回溯法-迷宫问题【python实现】

    题目描述 定义一个二维数组N*M(其中2<=N<=10;2<=M<=10),如5 × 5数组下所示: int maze[5][5] = { 0, 1, 0, 0, 0, 0,  ...

  3. 五大常用算法之二:动态规划算法(DP)

    一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...

  4. 马踏棋盘算法递归+回溯法实现 C语言

    r为矩阵的行,c为矩阵的列 将结果输出到当前目录下的results.txt. 结果将给出:1.是否存在路径使马可以按要求走遍所有的方格: 2.解的总数: 3.程序执行的时间: #include< ...

  5. Atitit.软件中见算法 程序设计五大种类算法

    Atitit.软件中见算法 程序设计五大种类算法 1. 算法的定义1 2. 算法的复杂度1 2.1. Algo cate2 3. 分治法2 4. 动态规划法2 5. 贪心算法3 6. 回溯法3 7. ...

  6. 五大常见算法策略之——动态规划策略(Dynamic Programming)

    Dynamic Programming   Dynamic Programming是五大常用算法策略之一,简称DP,译作中文是"动态规划",可就是这个听起来高大上的翻译坑苦了无数人 ...

  7. 实现n皇后问题(回溯法)

    /*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...

  8. python常用算法(7)——动态规划,回溯法

    引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2    ( n = 1,2     fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数 ...

  9. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

随机推荐

  1. 使用 Go 的 struct tag 来解析版本号字符串

    各类软件的版本号定义虽然都不尽相同,但是其基本原理基本上还是相通的:通过特写的字符对字符串进行分割.我们把这一规则稍作整理,放到 struct tag 中,告诉解析器如何解析,下面就以 semver ...

  2. 17.Generator函数的异步应用

    异步编程对 JavaScript 语言太重要.Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可. 1.传统方法 ES6 诞生以前,异步编程的方法,大概有下面 ...

  3. ActionController::UnfilteredParameters: unable to convert unpermitted parameters to hash

    rails 开发中 5.1版本使用binding.pry会报 ActionController::UnfilteredParameters: unable to convert unpermitted ...

  4. call()和apply()方法(切换上下文)

    call方法: 语法:call([thisObj[,arg1[, arg2[, [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. apply方法: 语法:apply ...

  5. PHP之string之ord()函数使用

    ord (PHP 4, PHP 5, PHP 7) ord - Return ASCII value of character ord - 返回字符的 ASCII 码值 Description int ...

  6. Prinzipien der Computer Zusammensetzung

    1.Die Einfuerung der Computer System 1.1 Computer Zusammensetzung und Computer Architektur Unter Com ...

  7. Nginx Open File Cache

    Nginx 的 open_file_cache 相关配置可以缓存静态文件的元信息,在这些静态文件被频繁访问时可以显着提升性能. 被缓存的文件元信息包括: fd,文件被打开一次后,fd保留使用 size ...

  8. Linq中连接

    Linq中连接主要有组连接.内连接.左外连接.交叉连接四种.各个用法如下. 注:本文内容主要来自<Linq实战>,本例中用到的对象请见文章底部. 1. 组连接 组连接是与分组查询是一样的. ...

  9. VS中特殊的注释——TODO/UNDONE/HACK的使用

    在代码的后面添加形如下面注释: //TODO: (未实现)…… //UNDONE:(没有做完)…… //HACK:(修改)…… 等到再次打开VS的时候,找到 :视图>任务列表 即可显示所有带有T ...

  10. JavaMail获取已发送邮件

    public static void main(String args[]) { Properties props = new Properties(); // 参数配置 props.setPrope ...