【51Nod1258】序列求和V4(FFT)

题面

51Nod

多组数据,求:

\[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000
\]

题解

预处理伯努利数,时间复杂度\(O(nlogn)\)

然后利用伯努利数求和即可。

\[\sum_{i=1}^n i^k=\frac{1}{k+1}\sum_{i=0}^kB_iC_{k+1}^i(n+1)^{k+1-i}
\]

预处理需要多项式求逆,因为模数不太好,所以需要\(MTT\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 1000000007
#define MAX 150000
const int NN=50000;
const int M=sqrt(MOD);
const double Pi=acos(-1);
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Complex{double a,b;}W[MAX],A1[MAX],A2[MAX],B1[MAX],B2[MAX],X[MAX],Y[MAX],Z[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.b*b.a+a.a*b.b};}
int r[MAX],N,l;
void FFT(Complex *P,int N,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=P[i+j+k]*w;
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
if(opt==-1)for(int i=0;i<N;++i)P[i].a/=N;
}
void MTT(int *a,int *b,int len,int *c)
{
memset(A1,0,sizeof(A1));memset(B1,0,sizeof(B1));
memset(A2,0,sizeof(A2));memset(B2,0,sizeof(B2));
for(N=1,l=0;N<=len;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
for(int i=0;i<len;++i)a[i]%=MOD,b[i]%=MOD;
for(int i=0;i<len;++i)A1[i].a=a[i]/M,A2[i].a=a[i]%M;
for(int i=0;i<len;++i)B1[i].a=b[i]/M,B2[i].a=b[i]%M;
memset(X,0,sizeof(X));memset(Y,0,sizeof(Y));memset(Z,0,sizeof(Z));
FFT(A1,N,1);FFT(A2,N,1);FFT(B1,N,1);FFT(B2,N,1);
for(int i=0;i<N;++i)
{
X[i]=A1[i]*B1[i];
Y[i]=A1[i]*B2[i]+A2[i]*B1[i];
Z[i]=A2[i]*B2[i];
}
FFT(X,N,-1);FFT(Y,N,-1);FFT(Z,N,-1);
for(int i=0;i<len;++i)
{
int ans=0;
ans=(ll)(X[i].a+0.5)%MOD*M%MOD*M%MOD;
ans=(ans+(ll)(Y[i].a+0.5)%MOD*M)%MOD;
ans=(ans+(ll)(Z[i].a+0.5))%MOD;
c[i]=ans;
}
}
int c[MAX],d[MAX];
void Inv(int *a,int *b,int len)
{
if(len==1){b[0]=fpow(a[0],MOD-2);return;}
Inv(a,b,len>>1);
MTT(a,b,len,c);MTT(b,c,len,d);
for(int i=0;i<len;++i)b[i]=(b[i]+b[i])%MOD;
for(int i=0;i<len;++i)b[i]=(b[i]+MOD-d[i])%MOD;
}
int a[MAX];
int n,B[MAX],jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
B[0]=jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=NN+NN;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=NN+NN;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=NN+NN;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=0;i<=NN;++i)a[i]=jv[i+1];
Inv(a,B,1<<16);
for(int i=0;i<=NN;++i)B[i]=1ll*B[i]*jc[i]%MOD;
int T=read();
while(T--)
{
int n=read()%MOD,k=read(),ans=0,nw=n+1;
for(int i=k;~i;--i,nw=1ll*nw*(n+1)%MOD)ans=(ans+1ll*C(k+1,i)*B[i]%MOD*nw)%MOD;
ans=1ll*ans*inv[k+1]%MOD;
printf("%d\n",ans);
}
return 0;
}

【51Nod1258】序列求和V4(FFT)的更多相关文章

  1. 51nod1258 序列求和V4

    T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...

  2. 51nod1258 序列求和 V4(伯努利数+多项式求逆)

    题面 传送门 题解 不知道伯努利数是什么的可以先去看看这篇文章 多项式求逆预处理伯努利数就行 因为这里模数感人,所以得用\(MTT\) //minamoto #include<bits/stdc ...

  3. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  4. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  5. HDU 5358 First One 求和(序列求和,优化)

    题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...

  6. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  7. 51nod_1236_序列求和 V3 _组合数学

    51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...

  8. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  9. lqb 入门训练 序列求和 (PS:用长整数做数据的输入输出)

    入门训练 序列求和 时间限制:1.0s   内存限制:256.0MB     问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3 ...

随机推荐

  1. asp.net core webapi项目配置全局路由

    0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 一.前言 在开发项目的过程中,我新创建了一个controller,发现vs会给我们直接在controller头添加前缀,比如[Ro ...

  2. python开发ftp服务器第一天(pyftpdlib)

    学习了大约快一个月的python,现在开始有意识做一些项目.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 据我了解,python现在更多的是用于自动化运维方面, ...

  3. javaweb(二十四)——jsp传统标签开发

    一.标签技术的API 1.1.标签技术的API类继承关系 二.标签API简单介绍 2.1.JspTag接口 JspTag接口是所有自定义标签的父接口,它是JSP2.0中新定义的一个标记接口,没有任何属 ...

  4. 根据xml生成相应的对象类

    根据xml生成相应的class对象,听起来很难其实很简单,用xsd.exe就能办到 打开vs 命令行运行xsd.exe 你的xml文件地址 空格/outputdir:存放xsd的地址 ok,这是生成了 ...

  5. Python中的内建函数(Built_in Funtions)

    前言 在Python官方文档的标准库章节中,第一节是简介,第二节就是Built_in Functions,可见内建函数是Python标准库的重要组成部分,而有很多内建函数我们平时却很少用到或根本就不知 ...

  6. nginx交替出现404和200

    今天在调试接口的时候,发现一个奇怪的问题,服务器接口交替返回404和200错误. 排查的时候发现nginx下有大量的404错误记录,而tomcat有两个,一个有正常的访问记录,而另一个虽然启动正常,但 ...

  7. CentOS 6.8 安装JDK8

    JDK安装 1.查看环境是否有默认jdk,输入命令: rpm -qa | grep jdk 如果有默认jdk,可以使用 yum remove 删除 2.进入系统根目录,创建developer文件夹 3 ...

  8. 【python 3.6】python读取json数据存入MySQL(一)

    整体思路: 1,读取json文件 2,将数据格式化为dict,取出key,创建数据库表头 3,取出dict的value,组装成sql语句,循环执行 4,执行SQL语句 #python 3.6 # -* ...

  9. JAVA学习笔记--组合与继承

    JAVA一个很重要的功能就是代码的可复用性,代码复用可以大大提升编程效率.这里主要介绍两种代码复用方式:组合和继承. 一.组合 组合比较直观,只需在新的类中产生现有类的对象,新的类由现有类的对象组成, ...

  10. springboot 集成 swagger

    1. 首先配置swaggerConfigpackage com.lixcx.lismservice.config; import com.lixcx.lismservice.format.Custom ...