【51Nod1258】序列求和V4(FFT)

题面

51Nod

多组数据,求:

\[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000
\]

题解

预处理伯努利数,时间复杂度\(O(nlogn)\)

然后利用伯努利数求和即可。

\[\sum_{i=1}^n i^k=\frac{1}{k+1}\sum_{i=0}^kB_iC_{k+1}^i(n+1)^{k+1-i}
\]

预处理需要多项式求逆,因为模数不太好,所以需要\(MTT\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MOD 1000000007
#define MAX 150000
const int NN=50000;
const int M=sqrt(MOD);
const double Pi=acos(-1);
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
struct Complex{double a,b;}W[MAX],A1[MAX],A2[MAX],B1[MAX],B2[MAX],X[MAX],Y[MAX],Z[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.b*b.a+a.a*b.b};}
int r[MAX],N,l;
void FFT(Complex *P,int N,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=P[i+j+k]*w;
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
if(opt==-1)for(int i=0;i<N;++i)P[i].a/=N;
}
void MTT(int *a,int *b,int len,int *c)
{
memset(A1,0,sizeof(A1));memset(B1,0,sizeof(B1));
memset(A2,0,sizeof(A2));memset(B2,0,sizeof(B2));
for(N=1,l=0;N<=len;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
for(int i=0;i<len;++i)a[i]%=MOD,b[i]%=MOD;
for(int i=0;i<len;++i)A1[i].a=a[i]/M,A2[i].a=a[i]%M;
for(int i=0;i<len;++i)B1[i].a=b[i]/M,B2[i].a=b[i]%M;
memset(X,0,sizeof(X));memset(Y,0,sizeof(Y));memset(Z,0,sizeof(Z));
FFT(A1,N,1);FFT(A2,N,1);FFT(B1,N,1);FFT(B2,N,1);
for(int i=0;i<N;++i)
{
X[i]=A1[i]*B1[i];
Y[i]=A1[i]*B2[i]+A2[i]*B1[i];
Z[i]=A2[i]*B2[i];
}
FFT(X,N,-1);FFT(Y,N,-1);FFT(Z,N,-1);
for(int i=0;i<len;++i)
{
int ans=0;
ans=(ll)(X[i].a+0.5)%MOD*M%MOD*M%MOD;
ans=(ans+(ll)(Y[i].a+0.5)%MOD*M)%MOD;
ans=(ans+(ll)(Z[i].a+0.5))%MOD;
c[i]=ans;
}
}
int c[MAX],d[MAX];
void Inv(int *a,int *b,int len)
{
if(len==1){b[0]=fpow(a[0],MOD-2);return;}
Inv(a,b,len>>1);
MTT(a,b,len,c);MTT(b,c,len,d);
for(int i=0;i<len;++i)b[i]=(b[i]+b[i])%MOD;
for(int i=0;i<len;++i)b[i]=(b[i]+MOD-d[i])%MOD;
}
int a[MAX];
int n,B[MAX],jc[MAX],jv[MAX],inv[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
B[0]=jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=NN+NN;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=NN+NN;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=NN+NN;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=0;i<=NN;++i)a[i]=jv[i+1];
Inv(a,B,1<<16);
for(int i=0;i<=NN;++i)B[i]=1ll*B[i]*jc[i]%MOD;
int T=read();
while(T--)
{
int n=read()%MOD,k=read(),ans=0,nw=n+1;
for(int i=k;~i;--i,nw=1ll*nw*(n+1)%MOD)ans=(ans+1ll*C(k+1,i)*B[i]%MOD*nw)%MOD;
ans=1ll*ans*inv[k+1]%MOD;
printf("%d\n",ans);
}
return 0;
}

【51Nod1258】序列求和V4(FFT)的更多相关文章

  1. 51nod1258 序列求和V4

    T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n).   例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...

  2. 51nod1258 序列求和 V4(伯努利数+多项式求逆)

    题面 传送门 题解 不知道伯努利数是什么的可以先去看看这篇文章 多项式求逆预处理伯努利数就行 因为这里模数感人,所以得用\(MTT\) //minamoto #include<bits/stdc ...

  3. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  4. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  5. HDU 5358 First One 求和(序列求和,优化)

    题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...

  6. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  7. 51nod_1236_序列求和 V3 _组合数学

    51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...

  8. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  9. lqb 入门训练 序列求和 (PS:用长整数做数据的输入输出)

    入门训练 序列求和 时间限制:1.0s   内存限制:256.0MB     问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3 ...

随机推荐

  1. STM32运行FreeRTOS出现prvTaskExitError错误死机

    文件port.c prvTaskExitError();任务退出错误,一个可能在任务里面写了return,另一个可能任务切换退出问题,入栈和出栈的时候出了问题. static void prvTask ...

  2. C++自学第一课:函数

    此贴并非教学,主要是自学笔记,所述内容只是些许个人学习心得的记录和备查积累,难以保证观点正确,也不一定能坚持完成. 如不幸到访,可能耽误您的时间,也难及时回复,贴主先此致歉.如偶有所得,相逢有缘,幸甚 ...

  3. Web性能测试篇:AB 压力测试

    1. 压力测试的概念\定义 1.这段话是给刚接触\学习性能测试知识的初学者,在实际工作中都会接触到性能测试.压力测试.负载测试等专业名词也容易混淆,下面带大家熟悉下这到底是怎么定义: 1.1.性能测试 ...

  4. Jenkins之Sonar 代码检查

    一.简介 SonarQube 是一个用于代码质量管理的开放平台.通过插件机制,Sonar 可以集成不同的测试工具,代码分析工具,以及持续集成工具.与持续集成工具(例如 Hudson/Jenkins 等 ...

  5. [T-ARA][HOLIDAY]

    歌词来源:http://music.163.com/#/song?id=22704407 HOLI HOLI DAY [HOLI HOLI DAY] 뚜뚜 뚜루루 [ddu-ddu ddu-lu-lu ...

  6. PSP Daily软件Alpha版本——基于NABCD评论,及改进建议

    1.根据(不限于)NABCD评论作品的选题: 此软件的用户人群较为明确,即:用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜在用户还有未来该课堂的学生和需要用PSP方法记录任务完 ...

  7. Beta阶段第一次网络会议

    Beta阶段第一次网络会议 游戏问题 游戏细节特征不够明显,大小虽然随着电脑分辨率的不同变化着,但是存在清楚的问题 游戏中的提示信息不够,玩家无法快速了解游戏 游戏中背景声音过于单一 游戏AI太简单 ...

  8. 03慕课网《vue.js2.5入门》——Vue-cli的安装,创建webpack模板项目

    安装Vue-cli 第一种 貌似不可以,然后用了第二种,但是重装系统后,第二种不能用了,用了第一种可以 # 全局安装vue -cli命令npm install --global vue-cli # 创 ...

  9. winform界面之固定大小随dpi

    场景: 已经更改成大小可随dpi改变,可是在用applyresoures()之后(添加更改语言功能),发现控件大小失真. 分析:applyresoures()是把该控件的属性改为程序设计的固定大小,不 ...

  10. 关于C语言的问卷调查!!!!!!!!!!

    1.我对自己的未来是现在通过大学这一平台逐渐接触社会,通过大学的这段时间学习C语言等计算机语言技术,有一技之长在手,并且通过大学时间丰富自己的业余生活,加强自己的人脉关系,为未来在事业上的发展做准备! ...