Peaks

求n个排列中有恰好k个峰的方案数,模239

n<=1015,k<=30

题解

\(f(i,j)\) 表示填了 \(1~ i\) 有 \(j\) 个峰的方案数。

那么 \(2j\cdot f(i,j) \rightarrow f(i+1,j)\),\((i+1-2j)\cdot f(i,j) \rightarrow f(i+1,j+1)\)。

于是转移可以写成矩阵形式。考虑系数 \(i+1-2j\) 怎么处理。发现由于模数很小,所以可以利用矩阵的周期性。

k和模数的大小提示找规律,事实上当 \(k\leq 30\) 时,\(f(n,k)=f(n+56882,k)~(\bmod 239)\)

CO int mod=239;
int f[56882][31]; int main(){
int n=read<LL>()%56882,k=read<int>();
f[1][1]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=k;++j)if(f[i][j]){
f[i+1][j]=(f[i+1][j]+2*j*f[i][j])%mod;
f[i+1][j+1]=(f[i+1][j+1]+(i+1-2*j)*f[i][j])%mod;
}
printf("%d\n",f[n][k]);
return 0;
}

3401 石头游戏 0x30「数学知识」例题

描述

石头游戏在一个 n 行 m 列 (1≤n,m≤8) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数字指明。
操作序列是一个长度不超过6且循环执行、每秒执行一个字符的字符串。每秒钟,所有格子同时执行各自操作序列里的下一个字符。序列中的每个字符是以下格式之一:
  • 数字0~9:表示拿0~9个石头到该格子。
  • NWSE:表示把这个格子内所有的石头推到相邻的格子,N表示上方,W表示左方,S表示下方,E表示右方。
  • D:表示拿走这个格子的所有石头。
给定每种操作序列对应的字符串,以及网格中每个格子对应的操作序列,求石头游戏进行了 t 秒之后,石头最多的格子里有多少个石头。在游戏开始时,网格是空的。

输入格式

第一行4个整数n, m, t, act。

接下来n行,每行m个字符,表示每个格子对应的操作序列。

最后act行,每行一个字符串,表示从0开始的每个操作序列。

输出格式

一个整数:游戏进行了t秒之后,所有方格中最多的格子有多少个石头。

样例输入

1 6 10 3
011112
1E
E
0

样例输出

3

样例解释

这是另一个类似于传送带的结构。左边的设备0间隔地产生石头并向东传送。设备1向右传送,直到设备2。10秒后,总共产生了5个石头,2个在传送带上,3个在最右边。

分析

由于\(\le 6\)的正整数的公倍数是60,所以每60秒操作序列一定会循环。那么考虑矩阵转移,预处理每秒转移矩阵和60秒的转移矩阵乘积,对\(\lfloor \frac{t}{60} \rfloor\)做60秒的,\(t \bmod 60\)做单秒的。为了新增石头,增加一个节点来提供。

时间复杂度\(O(60^3(\log \lfloor \frac{t}{60} \rfloor+t \bmod 60))\)

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long ll; ll f[70],d[70][70],e[70][70][70];
char b[20][20],s[100];
int n,m,t,act,p,a[20][20],c[20][20];
int num(int i,int j){
return (i-1)*m+j;
}
void mulself(ll a[70][70],ll b[70][70]){
static ll w[70][70];
memset(w,0,sizeof w);
for(int i=1;i<=p;++i)
for(int k=1;k<=p;++k) if(a[i][k])
for(int j=1;j<=p;++j)
w[i][j]+=a[i][k]*b[k][j];
memcpy(a,w,sizeof w);
}
void mul(ll a[70],ll b[70][70]){
static ll w[70];
memset(w,0,sizeof w);
for(int i=1;i<=p;++i)
for(int j=1;j<=p;++j)
w[i]+=a[j]*b[j][i];
memcpy(a,w,sizeof w);
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
read(n),read(m),read(t),read(act);
for(int i=1;i<=n;++i){
scanf("%s",s+1);
for(int j=1;j<=m;++j) a[i][j]=s[j]-'0'+1;
}
for(int i=1;i<=act;++i) scanf("%s",b[i]);
p=n*m+1;
for(int k=1;k<=60;++k){
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j){
int x=a[i][j],y=c[i][j];
if(isdigit(b[x][y])){
e[k][p][num(i,j)]=b[x][y]-'0';
e[k][num(i,j)][num(i,j)]=1;
}
else if(b[x][y]=='N'&&i>1) e[k][num(i,j)][num(i-1,j)]=1;
else if(b[x][y]=='W'&&j>1) e[k][num(i,j)][num(i,j-1)]=1;
else if(b[x][y]=='S'&&i<n) e[k][num(i,j)][num(i+1,j)]=1;
else if(b[x][y]=='E'&&j<m) e[k][num(i,j)][num(i,j+1)]=1;
c[i][j]=(y+1)%strlen(b[x]);
}
e[k][p][p]=1;
}
memcpy(d,e[1],sizeof e[1]);
for(int k=2;k<=60;++k) mulself(d,e[k]);
f[p]=1;
for(int w=t/60;w;w>>=1){
if(w&1) mul(f,d);
mulself(d,d);
}
for(int w=t%60,i=1;i<=w;++i) mul(f,e[i]);
ll ans=0;
for(int i=1;i<p;++i) ans=std::max(ans,f[i]);
printf("%lld\n",ans);
return 0;
}

CH3401 石头游戏的更多相关文章

  1. CH3401 石头游戏(矩阵快速幂加速递推)

    题目链接:传送门 题目: 石头游戏 0x30「数学知识」例题 描述 石头游戏在一个 n 行 m 列 (≤n,m≤) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数 ...

  2. 【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)

    [BZOJ2000][HNOI2000]取石头游戏(贪心,博弈论) 题面 BZOJ 洛谷 题解 这题好神仙啊,窝不会QaQ. 假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满 ...

  3. CH 3401 - 石头游戏 - [矩阵快速幂加速递推]

    题目链接:传送门 描述石头游戏在一个 $n$ 行 $m$ 列 ($1 \le n,m \le 8$) 的网格上进行,每个格子对应一种操作序列,操作序列至多有 $10$ 种,分别用 $0 \sim 9$ ...

  4. 【BZOJ2973】石头游戏 矩阵乘法

    [BZOJ2973]石头游戏 Description 石头游戏的规则是这样的. 石头游戏在一个n行m列的方格阵上进行.每个格子对应了一个编号在0~9之间的操作序列. 操作序列是一个长度不超过6且循环执 ...

  5. [luogu] P3210 [HNOI2010]取石头游戏(贪心)

    P3210 [HNOI2010]取石头游戏 题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参 ...

  6. 7月18日刷题记录 二分答案跳石头游戏Getting

    通过数:1 明天就要暑假编程集训啦~莫名开心 今天做出了一道 二分答案题(好艰辛鸭) 1049: B13-二分-跳石头游戏(二分答案) 时间限制: 5 Sec  内存限制: 256 MB提交: 30  ...

  7. 牛客1024B 石头游戏

    题目描述 石头游戏在一个 \(n\) 行 \(m\) 列 \((1\leq n,m \leq 8)(1≤n,m≤8)\) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这1 ...

  8. AcWing 206. 石头游戏 矩阵乘法|矩阵快速幂

    AcWing 206. 石头游戏 石头游戏在一个 n 行 m 列 (1≤n,m≤8) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数字指明. 操作序列是一个长度不 ...

  9. JAVA-小青蛙跳石头游戏

    游戏摘自微信传的手机网页版小游戏,我拿来做成了JAVA的界面版,但是没有去做素材,,直接拿方块代替小青蛙.游戏原址就不分享了,只能在手机上打开. 下面是源码: /* * Main.java * */ ...

随机推荐

  1. MyBatis—动态SQL

    什么是动态SQL? 1.基于OGNL表达式 2.完成多条件查询的逻辑 3.动态SQL的主要元素 (if,trim,where,set,choose,foreach) where标签 可以根据if中是否 ...

  2. 24UDP通信

    使用Qt提供的QUdpSocket进行UDP通信.在UDP方式下,客户端并不与服务器建立连接,它只负责调用发送函数向服务器发送数据.类似的服务器也不从客户端接收连接,只负责调用接收函数,等待来自客户端 ...

  3. hdu5009

    这题说的是给了一个  长度为n(n<=50000)的数列,数列表示的是给每个珍珠涂的颜色,任务是将一窜长度为n的珍珠涂成他所要的颜色.然后你可以操至多n次, 每次画只能画连续的区间,每次操作是的 ...

  4. MySQL基准测试工具--sysbench

    我们需要知道的是sysbench并不是一个压力测试工具,是一个基准测试工具.linux自带的版本比较低,我们需要自己安装sysbench. [root@test2 ~]# sysbench --ver ...

  5. POJ 3660 Cow ContestCow(Floyd传递闭包)题解

    题意:给出m个关系,问你能确定机头牛的排名 思路:要确定排名那必须要把他和其他n-1头牛比过才行,所以Floyd传递闭包,如果赢的+输的有n-1就能确定排名. 代码: #include<cstd ...

  6. caffe2 环境的搭建以及detectron的配置

    caffe2 环境的搭建以及detectron的配置 建议大家看一下这篇博客https://tech.amikelive.com/node-706/comprehensive-guide-instal ...

  7. Flask 4 拓展

    NOTE 1.Flask被设计为可拓展模式,所以没有提供如数据库和用户认证等重要的功能,允许开发者按需开发. 2.使用Flask-Script支持命令行选项: 安装flask-script: pip ...

  8. php 数值数组遍历

    <?php $cars=array("Volvo","BMW","Toyota"); $arrlength=count($cars); ...

  9. Intel Caffe 与原生Caffe

    1.  首先安装好docker,拉取intel caffe image: $ docker pull bvlc/caffe:intel 试着运行: $ docker run -it bvlc/caff ...

  10. 动态规划-背包问题 Knapsack

    2018-03-15 13:11:12 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何 ...