【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
题面
题解
和普通的整体分治差不多
用线段树维护一下每个查询区间内大于每次二分的值\(mid\)的值即可
然后再按套路做就行了
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar();
if (ch == '-') w = -1 , ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return w * data;
}
typedef long long ll;
const int MAX_N = 50005;
#define lson (o << 1)
#define rson (o << 1 | 1)
struct SGT {
bool clr; int tag; ll val;
void clear() { clr = 0, tag = val = 0; }
} t[MAX_N << 2];
int N, M, ans[MAX_N];
void puttag(int o, int l, int r, int w) {
t[o].val += 1ll * w * (r - l + 1);
t[o].tag += w;
}
void clear(int o) {
if (t[o].clr) {
t[lson].clear(), t[rson].clear();
t[lson].clr = t[rson].clr = 1;
t[o].clr = 0;
}
}
void pushdown(int o, int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
clear(o);
puttag(lson, l, mid, t[o].tag);
puttag(rson, mid + 1, r, t[o].tag);
t[o].tag = 0;
}
void modify(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return (void)puttag(o, l, r, 1);
pushdown(o, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) modify(lson, l, mid, ql, qr);
if (qr > mid) modify(rson, mid + 1, r, ql, qr);
t[o].val = t[lson].val + t[rson].val;
}
ll query(int o, int l, int r, int ql, int qr) {
pushdown(o, l, r);
if (ql <= l && r <= qr) return t[o].val;
int mid = (l + r) >> 1; ll res = 0;
if (ql <= mid) res += query(lson, l, mid, ql, qr);
if (qr > mid) res += query(rson, mid + 1, r, ql, qr);
return res;
}
struct Query { int op, x, y; ll z; } q[MAX_N], lq[MAX_N], rq[MAX_N];
void Div(int lval, int rval, int st, int ed) {
if (st > ed) return ;
if (lval == rval) {
for (int i = st; i <= ed; i++)
if (q[i].op != 0) ans[q[i].op] = lval;
return ;
}
int mid = (lval + rval) >> 1;
int lt = 0, rt = 0;
for (int i = st; i <= ed; i++) {
if (q[i].op == 0) {
if (q[i].z <= mid) lq[++lt] = q[i];
else {
rq[++rt] = q[i];
modify(1, 1, N, q[i].x, q[i].y);
}
} else {
ll res = query(1, 1, N, q[i].x, q[i].y);
if (res >= q[i].z) rq[++rt] = q[i];
else q[i].z -= res, lq[++lt] = q[i];
}
}
for (int i = 1; i <= lt; i++) q[i + st - 1] = lq[i];
for (int i = 1; i <= rt; i++) q[i + lt + st - 1] = rq[i];
t[1].clear(); t[1].clr = 1;
Div(lval, mid, st, st + lt - 1);
Div(mid + 1, rval, st + lt, ed);
}
int main () {
int tot = 0;
N = gi(), M = gi();
for (int i = 1; i <= M; i++) {
q[i].op = gi() - 1;
q[i].x = gi(), q[i].y = gi(), q[i].z = gi();
if (q[i].op) q[i].op = ++tot;
}
Div(-N, N, 1, M);
for (int i = 1; i <= tot; i++) printf("%d\n", ans[i]);
return 0;
}
【BZOJ3110】【LG3332】[ZJOI2013]K大数查询的更多相关文章
- 【BZOJ3110】[Zjoi2013]K大数查询 树套树
[BZOJ3110][Zjoi2013]K大数查询 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c,如果 ...
- 【bzoj3110】[Zjoi2013]K大数查询 权值线段树套区间线段树
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- 【BZOJ3110】[ZJOI2013]K大数查询(整体二分)
题目: BZOJ3110 分析: 整体二分模板题-- 先明确一下题意:每个位置可以存放多个数,第一种操作是"加入 (insert) "一个数而不是"加上 (add) &q ...
- 【bzoj3110】 Zjoi2013—K大数查询
http://www.lydsy.com/JudgeOnline/problem.php?id=3110 (题目链接) 题意 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在 ...
- BZOJ3110:[ZJOI2013]K大数查询
浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://www.lydsy.com/JudgeOnline/prob ...
- 【bzoj3110】[Zjoi2013]K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置 ...
- BZOJ3110:[ZJOI2013]K大数查询——题解
+++++++++++++++++++++++++++++++++++++++++++ +本文作者:luyouqi233. + +欢迎访问我的博客:http://www.cnblogs.com/luy ...
- BZOJ3110:[ZJOI2013]K大数查询(整体二分版)
浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html 题目传送门:https://lydsy.com/JudgeOnline/problem.p ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
随机推荐
- 关于javascript的单线程和异步的一些问题
关于js单线程和异步方面突然就糊涂了,看别人的文章越看越糊涂,感觉这方面是个坑,跳进去就不好跳出来.再去看,看着看着感觉自己明白了一些东西,也不知道对不对,反正是暂时把自己说服了,这样理解能理解的通, ...
- BZOJ1079:[SCOI2008]着色方案(DP)
Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个 ...
- 5、Spring Cloud-声明式调用 Feign(下)
5.5.在Feign中使用HttpClient和OkhHttp Feign 中.Client 是一个非常重要的组件, Feign 最终发送 Request 请求以及接收 Response响应都是由 C ...
- [转]对象映射类AutoMapper的使用
由于原文太长了,此处就直接贴上原文的超链接,大家自行学习. codeproject中的一篇文章: AutoMapper
- SublimeLinter插件对PHP语法检测不起作用的解决办法
系统:windows7+sublime3 1.安装sublimelinter ctrl+shift+p=>pi=>回车=>sublimelinter=>回车 2.安装好后进行配 ...
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- Gradle Goodness: Renaming Files while Copying
With the Gradle copy task we can define renaming rules for the files that are copied. We use the ren ...
- linux crontab 计划任务设置 (简结)
命令: crontab -l 查看当前运行的计划任务 crontab -e 编辑当前运行计划任务 修改或添加 VIM编辑器用法:按 i 键进入编辑文本状态, esc 结束编辑状态 , :wq ...
- LeetCode41.缺失的第一个正数 JavaScript
给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8,9,11 ...
- activiti获取到流程图节点信息之任务节点
//获取bpmnModel对象 BpmnModel model1 = new BpmnJsonConverter().convertToBpmnModel(modelNode); //由于我们这里仅仅 ...