2018 Multi-University Training Contest 8 Solution
A - Character Encoding
题意:用m个$0-n-1$的数去构成k,求方案数
思路:当没有0-n-1这个条件是答案为C(k+m-1, m-1),减去有大于的关于n的情况,当有i个n时的种类为C(k+m-1-i*n,m-1)个,利用容斥定理可得
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int MOD = ;
const int maxn = 1e6 + ; ll fac[maxn];
ll inv[maxn];
ll invfac[maxn]; void Init()
{
fac[] = inv[] = invfac[] = ;
fac[] = inv[] = invfac[] = ;
for(int i = ; i < maxn; ++i)
{
fac[i] = fac[i - ] * i % MOD;
inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
invfac[i] = invfac[i - ] * inv[i] % MOD;
}
} ll calc(ll n, ll m)
{
if(m > n || m < || n < ) return ;
return fac[n] * invfac[m] % MOD * invfac[n - m] % MOD;
} int n, m , k; int main()
{
Init();
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d %d %d", &n, &m, &k);
ll ans = ;
for(int i = ; i <= m; ++i)
{
ll tmp = k - 1ll * i * n + m - ;
if(tmp < ) break;
if(i & ) ans = (ans - calc(m, i) * calc(tmp, m - ) % MOD + MOD) % MOD;
else ans = (ans + calc(m, i) * calc(tmp, m - ) % MOD) % MOD;
// cout << i << " " << m << " " << calc(m, i);
// cout << tmp << " " << m - 1 << " " << calc(tmp, m - 1) << endl;
}
printf("%lld\n", ans);
}
return ;
}
B - Pizza Hub
题意:给出一个三角形,以及一个矩形的宽度,求一个最小的高度使得矩形能够覆盖三角形
思路:显然一定有一个点在矩形的顶点,枚举计算即可
#include<bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-;
const int maxn = 1e2; int sgn(double x)
{
if(fabs(x) < eps) return ;
else return x > ? : -;
} struct Point{
double x, y;
Point(){}
Point(double _x, double _y)
{
x = _x;
y = _y;
} void input()
{
scanf("%lf %lf", &x, &y);
} Point operator - (const Point &b) const
{
return Point(x - b.x, y - b.y);
} double operator ^ (const Point &b) const
{
return x * b.y - y * b.x;
} double distance(Point p)
{
return hypot(x - p.x, y - p.y);
} double len()
{
return hypot(x, y);
} double operator * (const Point &b) const
{
return x * b.x + y * b.y;
}
}P[maxn]; int w;
double ans;
double area; void calc(Point a, Point b)//low high
{
if(sgn(a * b) < ) return ;
if(sgn(a * a - w * w) <= )
{
if(sgn(a ^ b) < ) return ;
if(sgn((a * b) * (a * b) - w * w * (a * a)) > ) return ;
ans = min(ans, (a ^ b) / sqrt(a * a));
}
else
{
double h = sqrt(a * a - w * w);
double src1 = atan(h / w);
if(sgn(a ^ b) >= )
{
double src2 = acos((a * b) / (sqrt(a * a) * sqrt(b * b)));
if(sgn(src1 + src2 - PI / ) > ) return ;
double len1 = sqrt(b * b) * cos(src1 + src2);
if(sgn(len1 - w) > ) return ;
ans = min(ans, max(h, sqrt(b * b) * sin(src1 + src2)));
}
else
{
double src2 = acos((a * b) / (sqrt(a * a) * sqrt(b * b)));
if(sgn(src1 - src2) < ) return ;
double len1 = sqrt(b * b) * cos(src1 - src2);
if(sgn(len1 - w) > ) return ;
ans = min(ans, h);
}
}
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
for(int i = ; i <= ; ++i) P[i].input();
// double a = p[1].distance(p[2]);
// double b = p[2].distance(p[3]);
// double c = p[3].distance(p[1]);
// double p = (a + b + c) / 2.0;
// area = sqrt(p * (p - a) * (p - b) * (p - c));
ans = INF * 1.0;
scanf("%d", &w);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
for(int i = ; i <= ; ++i) P[i].y *= -1.0;
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
if(ans >= INF * 1.0) puts("impossible");
else printf("%.10f\n", ans);
}
return ;
}
C - City Development
留坑。
D - Parentheses Matrix
题意:构造一个矩阵,每一行和每一列都会构成一个括号序列,求合法括号序列尽量多
思路:
分类讨论:
n, m 都是奇数 随便构造
n, m 有一个奇数 那么 答案是那个奇数
比如 1 4
()()
两个都是偶数 如果有一个为2
比如 2 4
((((
))))
如果两个都大于四
比如六 六
((((((
()()()
(()())
()()()
(()())
)))))
像这样构造 答案是 n + m - 4
如果 n, m 中有个4
比如 4 4
(())
()()
(())
()()
#include<bits/stdc++.h> using namespace std; const int maxn = + ; int n, m;
char str[maxn][maxn]; int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d %d", &n, &m);
// printf("%d %d\n", n, m);
if(n % == && m % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("(");
}
printf("\n");
}
}
else if(n % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(m % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(n == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(m == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(n == )
{
for(int i = ; i <= m; ++i) printf("(");
printf("\n");
for(int i = ; i <= m; ++i)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
for(int i = ; i <= m; ++i)
{
if(i & ) printf(")");
else printf("(");
}
printf("\n");
for(int i = ; i <= m; ++i) printf(")");
printf("\n");
}
else if(m == )
{
for(int i = ; i <= n; ++i) str[i][] = '(';
for(int i = ; i <= n; ++i)
{
if(i & ) str[i][] = '(';
else str[i][] = ')';
}
for(int i = ; i <= n; ++i)
{
if(i & ) str[i][] = ')';
else str[i][] = '(';
}
for(int i = ; i <= n; ++i) str[i][] = ')';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("%c", str[i][j]);
}
printf("\n");
}
}
else
{
for(int i = ; i <= m; ++i) str[][i] = '(';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & )
{
if(j == ) str[i][j] = '(';
else if(j == m) str[i][j] = ')';
else if(j & ) str[i][j] = ')';
else str[i][j] = '(';
}
else
{
if(j & ) str[i][j] = '(';
else str[i][j] = ')';
}
}
}
for(int i = ; i <= m; ++i) str[n][i] = ')';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("%c", str[i][j]);
}
printf("\n");
}
}
}
return ;
}
E - Magic Square
按题意模拟即可。
#include <bits/stdc++.h>
using namespace std; #define pii pair <int, int>
int t, n;
char G[][]; void C(pii a)
{
int x = a.first, y = a.second;
char tmp[][];
tmp[][] = G[x + ][y];
tmp[][] = G[x][y];
tmp[][] = G[x + ][y + ];
tmp[][] = G[x][y + ];
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
G[x + i - ][y + j - ] = tmp[i][j];
} void R(pii a)
{
int x = a.first, y = a.second;
char tmp[][];
tmp[][] = G[x][y + ];
tmp[][] = G[x + ][y + ];
tmp[][] = G[x][y];
tmp[][] = G[x + ][y];
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
G[x + i - ][y + j - ] = tmp[i][j];
} pii pos[] =
{
pii(, ),
pii(, ),
pii(, ),
pii(, ),
}; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
for (int i = ; i <= ; ++i) scanf("%s", G[i] + );
char op; int x;
for (int i = ; i <= n; ++i)
{
scanf("%d %c", &x, &op);
if (op == 'C') C(pos[x - ]);
else R(pos[x - ]);
}
for (int i = ; i <= ; ++i) printf("%s\n", G[i] + );
}
return ;
}
F - Boolean 3-Array
留坑。
G - Card Game
留坑。
H - K-Similar Strings
留坑。
I - Make ZYB Happy
留坑。
J - Taotao Picks Apples
题意:每次可以改变一个值,求改变之后以第一个数开头的最长上升子序列的长度,改变仅当次有效
思路:考虑线段树,维护一个cnt, 和一个Max 两个区间合并的时候
如果左区间的$Max > 右区间的 Max$
那么右区间没有贡献
否则递归查找贡献
#include <bits/stdc++.h>
using namespace std; #define N 100010
int t;
int n, m;
int arr[N]; struct SEG
{
int cnt[N << ], Max[N << ];
void build(int id, int l, int r)
{
cnt[id] = Max[id] = ;
if (l == r) return;
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
}
int query(int id, int l, int r, int val)
{
if (l == r) return Max[id] > val;
int mid = (l + r) >> ;
if (Max[id] <= val) return ;
if (Max[id << ] <= val) return query(id << | , mid + , r, val);
else return cnt[id] - cnt[id << ] + query(id << , l, mid, val);
}
void update(int id, int l, int r, int pos, int val)
{
if (l == r)
{
cnt[id] = ;
Max[id] = val;
return;
}
int mid = (l + r) >> ;
if (pos <= mid) update(id << , l, mid, pos, val);
else update(id << | , mid + , r, pos, val);
cnt[id] = cnt[id << ] + query(id << | , mid + , r, Max[id << ]);
Max[id] = max(Max[id << ], Max[id << | ]);
}
}seg; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) scanf("%d", arr + i);
seg.build(, , n);
for (int i = ; i <= n; ++i) seg.update(, , n, i, arr[i]);
for (int i = , x, v; i <= m; ++i)
{
scanf("%d%d", &x, &v);
seg.update(, , n, x, v);
printf("%d\n", seg.cnt[]);
seg.update(, , n, x, arr[x]);
}
}
return ;
}
K - Pop the Balloons
留坑。
L - From ICPC to ACM
留坑。
2018 Multi-University Training Contest 8 Solution的更多相关文章
- 2018 Multi-University Training Contest 1 Solution
A - Maximum Multiple 题意:给出一个n 找x, y, z 使得$n = x + y +z$ 并且 $n \equiv 0 \pmod x, n \equiv 0 \pmod y, ...
- 2018 Multi-University Training Contest 2 Solution
A - Absolute 留坑. B - Counting Permutations 留坑. C - Cover 留坑. D - Game puts("Yes") #include ...
- 2018 Multi-University Training Contest 3 Solution
A - Problem A. Ascending Rating 题意:给出n个数,给出区间长度m.对于每个区间,初始值的max为0,cnt为0.遇到一个a[i] > ans, 更新ans并且cn ...
- 2018 Multi-University Training Contest 4 Solution
A - Problem A. Integers Exhibition 留坑. B - Problem B. Harvest of Apples 题意:计算$\sum_{i = 0}^{i = m}C( ...
- 2018 Multi-University Training Contest 5 Solution
A - Always Online Unsolved. B - Beautiful Now Solved. 题意: 给出一个n, k 每次可以将n这个数字上的某两位交换,最多交换k次,求交换后的最大 ...
- 2018 Multi-University Training Contest 6 Solution
A - oval-and-rectangle 题意:给出一个椭圆的a 和 b,在$[0, b]中随机选择c$ 使得四个顶点在椭圆上构成一个矩形,求矩形周长期望 思路:求出每种矩形的周长,除以b(积分) ...
- 2018 Multi-University Training Contest 7 Solution
A - Age of Moyu 题意:给出一张图,从1走到n,如果相邻两次走的边的权值不同,花费+1, 否则花费相同,求最小花费 思路:用set记录有当前点的最小花费有多少种方案到达,然后最短路 #i ...
- 2018 Multi-University Training Contest 9 Solution
A - Rikka with Nash Equilibrium 题意:构造一个$n * m$的矩阵,使得$[1, n * m]$ 中每个数只出现一次,并且纳什均衡只出现一次. 思路:从大到小的放置,每 ...
- 2018 Multi-University Training Contest 10 Solution
A - Problem A.Alkane 留坑. B - Problem B. Beads 留坑. C - Problem C. Calculate 留坑. D - Problem D. Permut ...
随机推荐
- ionic安装及测试
官方教程: http://ionicframework.com/getting-started/ 官方教程写得比较简单,简单来说就是 1)安装nodejs(安装方法:http://www.cnblog ...
- Linux的网卡相关
检测linux下网卡是否正常 1.dmesg | grep eth 如果出现以下 eth0: link up 说明是网卡正常的 eth0: registered as PCnet/PCI II 79 ...
- php 连接mongdb的类
<?php/** * php 连接mongdb的类的封装 * @author 李秀然 */ class mongdb{ private $host;//"mongodb://admin ...
- Effective C++ —— 定制new和delete(八)
STL容器所使用的heap内存是由容器所拥有的分配器对象管理,不是被new和delete直接管理.本章并不讨论STL分配器. 条款49 : 了解new-handler的行为 当operator new ...
- 【Java nio】Channel
package com.slp.nio; import org.junit.Test; import java.io.*; import java.nio.ByteBuffer; import jav ...
- css3-巧用选择器 “:target”
今天(昨天)又发现一个知识盲区 css3的:target标签,之前学习的时候就是一眼扫过,说是认识了,但其实也就记了三分钟,合上书就全忘光了. 直到昨天,遇到一个有意思的题目,用css3新特性做一个类 ...
- 域渗透学习预备知识-IPC$的入侵防御
一.什么是IPC$ 以下段落引文自:http://www.xfocus.net/articles/200303/493.html IPC$(Internet Process Connection)是共 ...
- 强连通分量+缩点(poj2553)
http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total ...
- 判断手机访问还是pc访问
function isMobile(){ // 如果有HTTP_X_WAP_PROFILE则一定是移动设备 if (isset ($_SERVER['HTTP_X_WAP_PROFILE'])) re ...
- The Accomodation of Students---hdu2444(二分图,最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2444 题意:有n个学生,m个关系,但是如果a认识b,b认识c,但是a不一定认识c: 求能不能把这n个人 ...