2018 Multi-University Training Contest 8 Solution
A - Character Encoding
题意:用m个$0-n-1$的数去构成k,求方案数
思路:当没有0-n-1这个条件是答案为C(k+m-1, m-1),减去有大于的关于n的情况,当有i个n时的种类为C(k+m-1-i*n,m-1)个,利用容斥定理可得
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int MOD = ;
const int maxn = 1e6 + ; ll fac[maxn];
ll inv[maxn];
ll invfac[maxn]; void Init()
{
fac[] = inv[] = invfac[] = ;
fac[] = inv[] = invfac[] = ;
for(int i = ; i < maxn; ++i)
{
fac[i] = fac[i - ] * i % MOD;
inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
invfac[i] = invfac[i - ] * inv[i] % MOD;
}
} ll calc(ll n, ll m)
{
if(m > n || m < || n < ) return ;
return fac[n] * invfac[m] % MOD * invfac[n - m] % MOD;
} int n, m , k; int main()
{
Init();
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d %d %d", &n, &m, &k);
ll ans = ;
for(int i = ; i <= m; ++i)
{
ll tmp = k - 1ll * i * n + m - ;
if(tmp < ) break;
if(i & ) ans = (ans - calc(m, i) * calc(tmp, m - ) % MOD + MOD) % MOD;
else ans = (ans + calc(m, i) * calc(tmp, m - ) % MOD) % MOD;
// cout << i << " " << m << " " << calc(m, i);
// cout << tmp << " " << m - 1 << " " << calc(tmp, m - 1) << endl;
}
printf("%lld\n", ans);
}
return ;
}
B - Pizza Hub
题意:给出一个三角形,以及一个矩形的宽度,求一个最小的高度使得矩形能够覆盖三角形
思路:显然一定有一个点在矩形的顶点,枚举计算即可
#include<bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-;
const int maxn = 1e2; int sgn(double x)
{
if(fabs(x) < eps) return ;
else return x > ? : -;
} struct Point{
double x, y;
Point(){}
Point(double _x, double _y)
{
x = _x;
y = _y;
} void input()
{
scanf("%lf %lf", &x, &y);
} Point operator - (const Point &b) const
{
return Point(x - b.x, y - b.y);
} double operator ^ (const Point &b) const
{
return x * b.y - y * b.x;
} double distance(Point p)
{
return hypot(x - p.x, y - p.y);
} double len()
{
return hypot(x, y);
} double operator * (const Point &b) const
{
return x * b.x + y * b.y;
}
}P[maxn]; int w;
double ans;
double area; void calc(Point a, Point b)//low high
{
if(sgn(a * b) < ) return ;
if(sgn(a * a - w * w) <= )
{
if(sgn(a ^ b) < ) return ;
if(sgn((a * b) * (a * b) - w * w * (a * a)) > ) return ;
ans = min(ans, (a ^ b) / sqrt(a * a));
}
else
{
double h = sqrt(a * a - w * w);
double src1 = atan(h / w);
if(sgn(a ^ b) >= )
{
double src2 = acos((a * b) / (sqrt(a * a) * sqrt(b * b)));
if(sgn(src1 + src2 - PI / ) > ) return ;
double len1 = sqrt(b * b) * cos(src1 + src2);
if(sgn(len1 - w) > ) return ;
ans = min(ans, max(h, sqrt(b * b) * sin(src1 + src2)));
}
else
{
double src2 = acos((a * b) / (sqrt(a * a) * sqrt(b * b)));
if(sgn(src1 - src2) < ) return ;
double len1 = sqrt(b * b) * cos(src1 - src2);
if(sgn(len1 - w) > ) return ;
ans = min(ans, h);
}
}
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
for(int i = ; i <= ; ++i) P[i].input();
// double a = p[1].distance(p[2]);
// double b = p[2].distance(p[3]);
// double c = p[3].distance(p[1]);
// double p = (a + b + c) / 2.0;
// area = sqrt(p * (p - a) * (p - b) * (p - c));
ans = INF * 1.0;
scanf("%d", &w);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
for(int i = ; i <= ; ++i) P[i].y *= -1.0;
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
calc(P[] - P[], P[] - P[]);
if(ans >= INF * 1.0) puts("impossible");
else printf("%.10f\n", ans);
}
return ;
}
C - City Development
留坑。
D - Parentheses Matrix
题意:构造一个矩阵,每一行和每一列都会构成一个括号序列,求合法括号序列尽量多
思路:
分类讨论:
n, m 都是奇数 随便构造
n, m 有一个奇数 那么 答案是那个奇数
比如 1 4
()()
两个都是偶数 如果有一个为2
比如 2 4
((((
))))
如果两个都大于四
比如六 六
((((((
()()()
(()())
()()()
(()())
)))))
像这样构造 答案是 n + m - 4
如果 n, m 中有个4
比如 4 4
(())
()()
(())
()()
#include<bits/stdc++.h> using namespace std; const int maxn = + ; int n, m;
char str[maxn][maxn]; int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d %d", &n, &m);
// printf("%d %d\n", n, m);
if(n % == && m % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("(");
}
printf("\n");
}
}
else if(n % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(m % == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(n == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(m == )
{
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j & ) printf("(");
else printf(")");
}
printf("\n");
}
}
else if(n == )
{
for(int i = ; i <= m; ++i) printf("(");
printf("\n");
for(int i = ; i <= m; ++i)
{
if(i & ) printf("(");
else printf(")");
}
printf("\n");
for(int i = ; i <= m; ++i)
{
if(i & ) printf(")");
else printf("(");
}
printf("\n");
for(int i = ; i <= m; ++i) printf(")");
printf("\n");
}
else if(m == )
{
for(int i = ; i <= n; ++i) str[i][] = '(';
for(int i = ; i <= n; ++i)
{
if(i & ) str[i][] = '(';
else str[i][] = ')';
}
for(int i = ; i <= n; ++i)
{
if(i & ) str[i][] = ')';
else str[i][] = '(';
}
for(int i = ; i <= n; ++i) str[i][] = ')';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("%c", str[i][j]);
}
printf("\n");
}
}
else
{
for(int i = ; i <= m; ++i) str[][i] = '(';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(i & )
{
if(j == ) str[i][j] = '(';
else if(j == m) str[i][j] = ')';
else if(j & ) str[i][j] = ')';
else str[i][j] = '(';
}
else
{
if(j & ) str[i][j] = '(';
else str[i][j] = ')';
}
}
}
for(int i = ; i <= m; ++i) str[n][i] = ')';
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
printf("%c", str[i][j]);
}
printf("\n");
}
}
}
return ;
}
E - Magic Square
按题意模拟即可。
#include <bits/stdc++.h>
using namespace std; #define pii pair <int, int>
int t, n;
char G[][]; void C(pii a)
{
int x = a.first, y = a.second;
char tmp[][];
tmp[][] = G[x + ][y];
tmp[][] = G[x][y];
tmp[][] = G[x + ][y + ];
tmp[][] = G[x][y + ];
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
G[x + i - ][y + j - ] = tmp[i][j];
} void R(pii a)
{
int x = a.first, y = a.second;
char tmp[][];
tmp[][] = G[x][y + ];
tmp[][] = G[x + ][y + ];
tmp[][] = G[x][y];
tmp[][] = G[x + ][y];
for (int i = ; i <= ; ++i)
for (int j = ; j <= ; ++j)
G[x + i - ][y + j - ] = tmp[i][j];
} pii pos[] =
{
pii(, ),
pii(, ),
pii(, ),
pii(, ),
}; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
for (int i = ; i <= ; ++i) scanf("%s", G[i] + );
char op; int x;
for (int i = ; i <= n; ++i)
{
scanf("%d %c", &x, &op);
if (op == 'C') C(pos[x - ]);
else R(pos[x - ]);
}
for (int i = ; i <= ; ++i) printf("%s\n", G[i] + );
}
return ;
}
F - Boolean 3-Array
留坑。
G - Card Game
留坑。
H - K-Similar Strings
留坑。
I - Make ZYB Happy
留坑。
J - Taotao Picks Apples
题意:每次可以改变一个值,求改变之后以第一个数开头的最长上升子序列的长度,改变仅当次有效
思路:考虑线段树,维护一个cnt, 和一个Max 两个区间合并的时候
如果左区间的$Max > 右区间的 Max$
那么右区间没有贡献
否则递归查找贡献
#include <bits/stdc++.h>
using namespace std; #define N 100010
int t;
int n, m;
int arr[N]; struct SEG
{
int cnt[N << ], Max[N << ];
void build(int id, int l, int r)
{
cnt[id] = Max[id] = ;
if (l == r) return;
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
}
int query(int id, int l, int r, int val)
{
if (l == r) return Max[id] > val;
int mid = (l + r) >> ;
if (Max[id] <= val) return ;
if (Max[id << ] <= val) return query(id << | , mid + , r, val);
else return cnt[id] - cnt[id << ] + query(id << , l, mid, val);
}
void update(int id, int l, int r, int pos, int val)
{
if (l == r)
{
cnt[id] = ;
Max[id] = val;
return;
}
int mid = (l + r) >> ;
if (pos <= mid) update(id << , l, mid, pos, val);
else update(id << | , mid + , r, pos, val);
cnt[id] = cnt[id << ] + query(id << | , mid + , r, Max[id << ]);
Max[id] = max(Max[id << ], Max[id << | ]);
}
}seg; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) scanf("%d", arr + i);
seg.build(, , n);
for (int i = ; i <= n; ++i) seg.update(, , n, i, arr[i]);
for (int i = , x, v; i <= m; ++i)
{
scanf("%d%d", &x, &v);
seg.update(, , n, x, v);
printf("%d\n", seg.cnt[]);
seg.update(, , n, x, arr[x]);
}
}
return ;
}
K - Pop the Balloons
留坑。
L - From ICPC to ACM
留坑。
2018 Multi-University Training Contest 8 Solution的更多相关文章
- 2018 Multi-University Training Contest 1 Solution
A - Maximum Multiple 题意:给出一个n 找x, y, z 使得$n = x + y +z$ 并且 $n \equiv 0 \pmod x, n \equiv 0 \pmod y, ...
- 2018 Multi-University Training Contest 2 Solution
A - Absolute 留坑. B - Counting Permutations 留坑. C - Cover 留坑. D - Game puts("Yes") #include ...
- 2018 Multi-University Training Contest 3 Solution
A - Problem A. Ascending Rating 题意:给出n个数,给出区间长度m.对于每个区间,初始值的max为0,cnt为0.遇到一个a[i] > ans, 更新ans并且cn ...
- 2018 Multi-University Training Contest 4 Solution
A - Problem A. Integers Exhibition 留坑. B - Problem B. Harvest of Apples 题意:计算$\sum_{i = 0}^{i = m}C( ...
- 2018 Multi-University Training Contest 5 Solution
A - Always Online Unsolved. B - Beautiful Now Solved. 题意: 给出一个n, k 每次可以将n这个数字上的某两位交换,最多交换k次,求交换后的最大 ...
- 2018 Multi-University Training Contest 6 Solution
A - oval-and-rectangle 题意:给出一个椭圆的a 和 b,在$[0, b]中随机选择c$ 使得四个顶点在椭圆上构成一个矩形,求矩形周长期望 思路:求出每种矩形的周长,除以b(积分) ...
- 2018 Multi-University Training Contest 7 Solution
A - Age of Moyu 题意:给出一张图,从1走到n,如果相邻两次走的边的权值不同,花费+1, 否则花费相同,求最小花费 思路:用set记录有当前点的最小花费有多少种方案到达,然后最短路 #i ...
- 2018 Multi-University Training Contest 9 Solution
A - Rikka with Nash Equilibrium 题意:构造一个$n * m$的矩阵,使得$[1, n * m]$ 中每个数只出现一次,并且纳什均衡只出现一次. 思路:从大到小的放置,每 ...
- 2018 Multi-University Training Contest 10 Solution
A - Problem A.Alkane 留坑. B - Problem B. Beads 留坑. C - Problem C. Calculate 留坑. D - Problem D. Permut ...
随机推荐
- BigDecimal类(精度计算类)的加减乘除
BigDecimal类 对于不需要任何准确计算精度的数字可以直接使用float或double,但是如果需要精确计算的结果,则必须使用BigDecimal类,而且使用BigDecimal类也可以进行大数 ...
- xmapp上搭建dvwa
1. XMapp下载好,安装于C:盘下 2. 根据readme中的揭开,首先执行setup_xmapp. 3. 单击xampp_start, 不报错则继续 4. 在browser中访问localhos ...
- PyQt4布局管理——绝对定位方式
PyQt4中的布局管理器 布局管理器是编程中重要的一部分.所谓布局管理器是指我们在窗口中安排部件位置的方法.布局管理器有两种工作方式:绝对定位方式(absolute positioning)和布局类别 ...
- win7(64)使用vim碰到的奇怪问题
一直使用conemu做控制台使用vim,操作系统win7 64位,一直用的很好. 今天使用gvim打开文件发现c:\program file(x86)\vim\_vimrc不生效,最奇怪的是,采用控制 ...
- rpm方式安装 gitlab centos7
一.使用RPM安装 - 推荐 官方推荐的下载地址:https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/ Tips 1 : Centos 7使用el7 ...
- 【BZOJ2815】[ZJOI2012]灾难 拓扑排序+LCA
[BZOJ2815][ZJOI2012]灾难 题目描述 阿米巴是小强的好朋友. 阿米巴和小强在草原上捉蚂蚱.小强突然想,果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从 ...
- LCA在线算法(hdu2586)
hdu2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- numeric_limits 模板的相关知识点
说白了,它是一个模板类,它主要是把C++当中的一些内建型别进行了封装,比如说numeric_limits<int>是一个特化后的类,从这个类的成员变量与成员函数中,我们可以了解到int的很 ...
- spring+springMVC+Mybatis 中使用@Transcational方式管理事务的配置方法
springMVC 中,事务通常都在service层控制,当然controller层也可以用事务,只要配置配对,但通常不建议直接在controller层配事务,controller的作用是管理参数以及 ...
- 阿里云 elastic search 重启 过程
阿里云 es 重启 elasticsearch 重启 过程 实例变更中 53.13% 准备ECS资源 已完成节点数:4/4, 进度:100% 准备容器服务 进度:100% 变 ...