UVALive - 2927 "Shortest" pair of paths(最小费用最大流)题解
题意:有n个机器,机器之间有m条连线,我们需要判断机器0到n-1是否存在两条线路,存在输出最小费用。
思路:我们把0连接超级源点,n-1连接超级汇点,两者流量都设为2,其他流量设为1,那么只要最后我们能找到超级汇点和超级源点的流量为2就说明有两条路,输出最小值。
代码:
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define ll long long
const int maxn = 1000+5;
const int maxm = 10000+5;
const int MOD = 1e7;
const int INF = 1 << 25;
using namespace std;
struct Edge{
int to,next,cap,flow,cost;
}edge[maxm];
int head[maxn],tot;
int pre[maxn],dis[maxn];
bool vis[maxn];
int N,M;
void init(){
N = maxn;
tot = 0;
memset(head,-1,sizeof(head));
}
void addEdge(int u,int v,int cap,int cost){
edge[tot].to = v;
edge[tot].cap = cap; //容量
edge[tot].flow = 0;
edge[tot].cost = cost;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].to = u;
edge[tot].cap = 0;
edge[tot].flow = 0;
edge[tot].cost = -cost;
edge[tot].next = head[v];
head[v] = tot++;
}
bool spfa(int s,int t){
queue<int> q;
for(int i = 0;i < N;i++){
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u];i != -1;i = edge[i].next){
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
return pre[t] != -1;
}
int MCMF(int s,int t,int &cost){
int flow = 0;
cost = 0;
while(spfa(s,t)){
int MIN = INF;
for(int i = pre[t];i != -1;i = pre[edge[i^1].to]){
if(MIN > edge[i].cap - edge[i].flow){
MIN = edge[i].cap - edge[i].flow;
}
}
for(int i = pre[t];i != -1; i = pre[edge[i^1]. to]){
edge[i]. flow += MIN;
edge[i^1]. flow -= MIN;
cost += edge[i]. cost * MIN;
}
flow += MIN;
}
return flow;
}
int main(){
int n,m,Case = 1;
while(scanf("%d%d",&n,&m) && n+m){
init();
addEdge(0,1,2,0);
addEdge(n,n + 1,2,0);
int u,v,w;
while(m--){
scanf("%d%d%d",&u,&v,&w);
addEdge(u + 1,v + 1,1,w);
}
int cost;
int flow = MCMF(0,n + 1,cost);
if(flow == 2)
printf("Instance #%d: %d\n",Case++,cost);
else
printf("Instance #%d: Not possible\n",Case++);
}
return 0;
}
/*
2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0
Instance #1: Not possible
Instance #2: 40
Instance #3: 73
*/
UVALive - 2927 "Shortest" pair of paths(最小费用最大流)题解的更多相关文章
- [poj] 3068 "Shortest" pair of paths || 最小费用最大流
[原题](http://poj.org/problem?id=3068) 给一个有向带权图,求两条从0-N-1的路径,使它们没有公共点且边权和最小 . //是不是像传纸条啊- 是否可行只要判断最后最大 ...
- UVALIVE 2927 "Shortest" pair of paths
裸的费用流.一开始因为这句话还觉得要拆点 样例行不通不知道这句话干啥用的.Further, the company cannot place the two chemicals in same dep ...
- 2018.06.27"Shortest" pair of paths(费用流)
"Shortest" pair of paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1589 A ...
- POJ3068 "Shortest" pair of paths 【费用流】
POJ3068 "Shortest" pair of paths Description A chemical company has an unusual shortest pa ...
- TZOJ 4712 Double Shortest Paths(最小费用最大流)
描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...
- POJ 3068 "Shortest" pair of paths(费用流)
[题目链接] http://poj.org/problem?id=3068 [题目大意] 给出一张图,要把两个物品从起点运到终点,他们不能运同一条路过 每条路都有一定的费用,求最小费用 [题解] 题目 ...
- P3381 【模板】最小费用最大流 题解
CSDN同步 原题链接 前置知识: 从三种算法剖析网络流本质 简要题意: 给定网络图,求图的最大流,以及流量为最大流时的最小费用. 现在假设你们看了那篇网络流博客之后,所有人都会了 \(\text{E ...
- 连续最短路算法(Successive Shortest Path)(最小费用最大流)
#include <cstdio> #include <cstring> #include <queue> #include <vector> #inc ...
- UVA 1658 海军上将(拆点法+最小费用限制流)
海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...
随机推荐
- Maven常用操作
1. 修改Maven的本地仓库路径 1.1 默认会放在~/.m2/repository目录下 (“~”代表用户的目录,比如windows下一般都是C:\Documents and Settings\[ ...
- Request.getRequestURL
getRequestURI()就相当于你在写一个JSP页面的时候会有这样的东西"action='/WebRoot/xxx'"这个方法就是获得'/WebRoot/xxx',也就是说它 ...
- java jar命令及补丁方法
用法: jar {ctxui}[vfmn0PMe] [jar-file] [manifest-file] [entry-point] [-C dir] files ...选项: -c 创建新档案 -t ...
- 收集一些常用的CDN链接!无需下载快速使用!
一些常用的CDN链接,可以到这里看: http://www.bootcdn.cn/ 这个网站查找资源的方式很简单,后缀加上要查找的名字即可: 例如: http://www.bootcdn.cn/boo ...
- 对TControl和TWinControl相同与不同之处的深刻理解(每一个WinControl就相当于扮演了整个Windows的窗口管理角色,主要是窗口显示和窗口大小)——TWinControl就两个作用(管理子控件的功能和调用句柄API的功能)
TControl是图形控件,它本身没有句柄,所以不能直接使用WINAPI显示,调整位置,发消息等等,只能想办法间接取得想要的效果,但是可以直接使用一些不需要句柄的API,比如InvalidateRec ...
- TC/IP协议簇
TCP/IP: 数据链路层:ARP,RARP网络层: IP,ICMP,IGMP传输层:TCP ,UDP,UGP应用层:Telnet,FTP,SMTP,SNMP. OSI:物理层:EIA/TIA-232 ...
- Oracle Schema Objects——PARTITION
Oracle Schema Objects 表分区 表- - 分区( partition )TABLE PARTITION 一段时间给出一个分区,这样方便数据的管理. 可以按照范围range分区,列表 ...
- Codeforces Round #438 by Sberbank and Barcelona Bootcamp (Div. 1 + Div. 2 combined)
A. Bark to Unlock 题目链接:http://codeforces.com/contest/868/problem/A 题目意思:密码是两个字符组成的,现在你有n个由两个字符组成的字符串 ...
- Django之views.py详解
http请求中产生的两个核心对象: http请求:HttpRequesthttp响应:HttpResponse 所在位置:from django.http import HttpRequest,Htt ...
- Python开发【Django】:组合搜索、JSONP、XSS过滤
组合搜索 做博客后台时,需要根据文章的类型做不同的检索 1.简单实现 关联文件: from django.conf.urls import url from . import views urlpat ...