本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  Kepler.gl作为一款强大的开源地理信息数据可视化工具,可以帮助我们轻松制作针对大规模矢量数据的可视化作品,从而辅助数据分析工作。

  Kepler.gl制作常规地图非常简单方便,稍微摸索一下仪表盘界面就可以get到用法,但有些特殊的地图则需要额外对数据进行处理或使用Kepler.gl中的一些隐藏功能,譬如之前写过的(数据科学学习手札85)Python+Kepler.gl轻松制作酷炫路径动画中介绍过的动态路径地图。本文将要介绍的时间轮播地图也是一种比较特殊的地图,下面我们就将结合实际例子进行介绍。

2 Python+Kepler.gl制作时间轮播地图

2.1 实例:Uber出行乘客上下车信息

  我们以Uber官方提供的2015年某日纽约乘客上下车数据为例,对应文章开头Github仓库中的data.csv,关于Python+Kepler.gl的环境配置可以回顾(数据科学学习手札85)Python+Kepler.gl轻松制作酷炫路径动画中的相关内容。

  首先我们读入data.csv数据:

import pandas as pd
from keplergl import KeplerGl raw = pd.read_csv('data.csv')
raw.head()

图1

  需要注意我们的数据中除了必要的经纬度点信息之外,包含了tpep_pickup_datetimetpep_dropoff_datetime两列日期格式的数据,这是绘制日期轮播地图的关键,即我们的数据集中针对每行数据记录必须有与之相对应的时间信息。

  数据准备完毕,使用下列代码向外部导出Kepler.gl对应的html文件,因为所有视觉元素我们都单独手动调整,这里只需要将目标数据嵌入html文件即可:

map1 = KeplerGl(height=800, data={'layer1': raw}) # 生成Kepler.gl网页
map1.save_to_html(file_name='时间轮播地图示例1.html', data={'layer1': raw}) # 导出网页

  在外部打开前面导出的html文件,初始界面如图2:

图2

  首先删除掉侧边栏Kepler.gl自动识别创建出的全部图层,我们自己手动创建所需的图层,以OD线为例:

图3
图4

  接着根据数据本身属性进行适当的视觉元素的调整,这部分看个人喜好,具体步骤略过:

图5

  接下来到最重要的步骤,打开左上角的筛选面板:

图6

  点击Add Filter,选择想要作为时间轮播依据信息的字段:

图7

  地图右下角随即出现时间轮播部件:

图8

  可以在时间轮播部件中设置时间窗口跨度、播放速度等,下面是我制作出的效果,因为动图录制帧数不宜太高,实际比动图中要流畅很多,你也可以自己自由探索:

图9


  对于其他格式的数据譬如GeoJSON,同样适用,只需要属性表中一定存在时间类型信息即可,以上就是本文的全部内容,欢迎在评论区与我们进行讨论。

(数据科学学习手札90)Python+Kepler.gl轻松制作时间轮播图的更多相关文章

  1. (数据科学学习手札85)Python+Kepler.gl轻松制作酷炫路径动画

    本文示例代码.数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl相信很多人都听说过,作为 ...

  2. (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)

    一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...

  3. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  4. (数据科学学习手札32)Python中re模块的详细介绍

    一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...

  5. (数据科学学习手札80)用Python编写小工具下载OSM路网数据

    本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会 ...

  6. (数据科学学习手札55)利用ggthemr来美化ggplot2图像

    一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...

  7. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  8. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  9. (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...

随机推荐

  1. cb39a_c++_STL_算法_for_each_transform_比较

    cb39a_c++_STL_算法_for_each_transform_比较for_each() 速度快,不灵活transform() 速度慢, 非常灵活 STL算法-修改性算法for_each()c ...

  2. 安装mysql报错:遇到缺少vcruntime140_1.dll文件

    把vcruntime140_1.dll文件放到System32 ,和System64就行 文件地址为:C:\Windows\System32 直接百度下载放进去就行

  3. .Net Core Configuration源码探究

    前言     上篇文章我们演示了为Configuration添加Etcd数据源,并且了解到为Configuration扩展自定义数据源还是非常简单的,核心就是把数据源的数据按照一定的规则读取到指定的字 ...

  4. sklearn机器学习算法--K近邻

    K近邻 构建模型只需要保存训练数据集即可.想要对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”. 1.K近邻分类 #第三步导入K近邻模型并实例化KN对象 from skl ...

  5. 关于JavaScript函数

    object.defineProperty()函数 再学习这个函数之前,我们先创建一个object对象 var person = {} person.name = "junlebao&quo ...

  6. pxc搭建mysql集群

    docker -y update yum install -y docker service docker satrt docker images 服务器:curl -sSL https://get. ...

  7. 栈的顺序存储和链式存储c语言实现

    一. 栈 栈的定义:栈是只允许在一端进行插入或删除操作的线性表. 1.栈的顺序存储 栈顶指针:S.top,初始设为-1 栈顶元素:S.data[S.top] 进栈操作:栈不满时,栈顶指针先加1,再到栈 ...

  8. python数据类型的72变

    输入数据的类型 input函数接收的数据默认为字符串类型 转换函数 通过转换函数实现接收其他类型的数据 1.接收整数:字符串→整型数据: int("整数格式的字符串") 2.接收小 ...

  9. Mybatis 报错

    Mybatis 报错 builder.BuilderException: Error parsing SQL Mapper Configuration Caused by: org.apache.ib ...

  10. 看看有哪些 Web 认证技术.

    BASIC 认证 BASIC 认证(基本认证)是从 HTTP/1.0 就定义的认证方式. BASIC 认证会将"用户名:密码"经过 Base64 加密后放入请求头部的 Author ...