题解-CF617E XOR and Favorite Number
题面
给定 \(n,m,k\) 和 \(n\) 个数的序列 \(a_i\),\(m\) 次求区间 \([l,r]\) 中异或值为 \(k\) 的子序列个数。
数据范围:\(1\le n,m\le 10^5\),\(0\le k,a_i\le 10^6\)。
蒟蒻语
这题的莫队做法太一眼,谁都会是吧(
那么蒟蒻就来写一个过不了这题(会 MLE、TLE)但是可以在线且很有趣的做法:分块。
说不定谁去开大限制卡个离线蒟蒻解就成正解了
。
蒟蒻解
设 \(f(l,r)\) 表示区间 \([l,r]\) 的异或值为 \(k\) 的子区间数。
设 \(cross(l,r)\) 表示区间左端点在 \([1,l]\) 右端点在 \([r,n]\) 的异或值为 \(k\) 的区间数。
先容斥一下(\(cross(l-1,r+1)\) 为了抵消掉 \(f(1,n)\) 中多余的部分):
\]
这东西前 \(3\) 项可以时空 \(\Theta(n)\) 求出,只是最后一项太恶心了,蒟蒻的方法是分块时空 \(\Theta(n\sqrt{n})\)(巨佬如果有更优做法一定要指教蒟蒻)。
设有 \(b_n\) 个块,每个块为 \([l_i,r_i]\)。
先预处理 \(i<j:cro_{i,j}=cross(r_i,l_j)\),做法同莫队,前缀和加 unordered_map。
再记 \(lc_{i,c}\) 表示 \([1,r_i]\) 中前缀和为 \(c\) 的个数,\(rc_{i,c}\) 表示 \([l_i,n]\) 中前缀和为 \(c\) 的个数。
求 \(cross(l,r)\) 时,设 \(lb=\max_{i=1}^{b_n} r_i\le l\),\(rb=\min_{i=1}^{b_n} l_i\ge r\)。
结果就是 \(cro_{lb,rb}\) 再加上
左端点在 \([r_{lb}+1,l]\) 右端点在 \([l_{rb},n]\) 的答案(用 \(rc\) 数组求)
和左端点在 \([1,r_{lb}]\) 右端点在 \([r,l_{rb}-1]\) 的答案(用 \(lc\) 数组求)
和左端点在 \([r_{lb}+1,l]\) 右端点在 \([r,l_{rb}-1]\) 的答案(用前缀和加 unordered_map)。
然后这题就做完了,别忘了这个做法过不了。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=1e5;
int n,m,k,sm[N+2];
int a[N+1]; ll la[N+2],ra[N+2];
unordered_map<int,int> cnt;
//Block
const int B=320;
int sz,b[N+1];
ll cro[B+2][B+2];
unordered_map<int,int> lc[B+2],rc[B+2];
void build(){
sz=sqrt(n);
for(int i=1;i<=n;i++) b[i]=(i-1)/sz+1;
for(int i=1;i<=b[n];i++)
for(int j=1;j<=min(sz*i,n);j++) lc[i][sm[j-1]]++;
for(int i=1;i<=b[n];i++)
for(int j=n;j>=sz*(i-1)+1;j--) rc[i][sm[j]]++;
for(int i=1;i<=b[n];i++){
for(int t=b[n];t>i;t--){
for(int j=sz*(t-1)+1;j<=min(sz*t,n);j++)
cro[i][t]+=lc[i][sm[j]^k];
cro[i][t]+=cro[i][t+1];
}
}
}
ll cross(int l,int r){
if(l<0||r>n) return 0;
int lb=b[l+1]-1,rb=b[r-1]+1;
ll res=cro[lb][rb];
cnt.clear();
for(int i=lb*sz+1;i<=l;i++) cnt[sm[i-1]]++;
for(int i=r;i<=min((rb-1)*sz,n);i++) res+=cnt[sm[i]^k];
for(int i=lb*sz+1;i<=l;i++) res+=rc[rb][sm[i-1]^k];
for(int i=r;i<=min((rb-1)*sz,n);i++) res+=lc[lb][sm[i]^k];
return res;
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>k;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) sm[i]=sm[i-1]^a[i];
cnt.clear(),cnt[sm[0]]++;
for(int i=1;i<=n;i++) la[i]=la[i-1]+cnt[sm[i]^k],cnt[sm[i]]++;
cnt.clear(),cnt[sm[n]]++;
for(int i=n;i>=1;i--) ra[i]=ra[i+1]+cnt[sm[i-1]^k],cnt[sm[i-1]]++;
assert(la[n]==ra[1]);
// for(int i=1;i<=n;i++) cout<<la[i]<<' ';cout<<'\n';
// for(int i=1;i<=n;i++) cout<<ra[i]<<' ';cout<<'\n';
build();
for(int i=0;i<m;i++){
int l,r; cin>>l>>r;
cout<<ra[l]+la[r]-la[n]+cross(l-1,r+1)<<'\n';
}
return 0;
}
祝大家学习愉快!
题解-CF617E XOR and Favorite Number的更多相关文章
- CF617E XOR and Favorite Number
CF617E XOR and Favorite Number 已知一个序列 \(a_1,\ a_2,\ \cdots,\ a_n\) 和 \(k\) ,\(m\) 次询问给出 \(l,\ r\) ,求 ...
- [CF617E]XOR and Favorite Number/[CQOI2018]异或序列
题目大意: 给定一个长度为$n(n\leq10^5)$的数列$A$和数$k$$(A_i,k\leq10^6)$.$m$组询问,每次询问区间$[l,r]$中有多少对$i,j(l\leq i\leq j\ ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Codeforeces 617E XOR and Favorite Number(莫队+小技巧)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- XOR and Favorite Number(莫队算法+分块)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- XOR and Favorite Number (莫对算法)
E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】
任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
随机推荐
- 从头学起Verilog(三):Verilog逻辑设计
引言 经过了组合逻辑和时序逻辑的复习,终于到了Verilog部分.这里主要介绍Verilog一些基础内容,包括结构化模型.TestBench编写和仿真.真值表模型. 这部分内容不多,也都十分基础,大家 ...
- ceph的rbd备份软件ceph-backup
teralytics是一家国外的大数据公司,这个是他们开源的ceph的备份的工具,在twitter上搜索相关信息的时候看到,觉得不错就拿来试用一番 这是个什么软件 一个用来备份 ceph 的 rbd ...
- 丢了ceph.mon.keying解决办法
在linux操作系统下,可能因为一些很小的误操作,都会造成非常重要的文件的丢失,而文件的备份并不是每时每刻都会注意到,一般是等到文件丢失了才会去想办法,这里讲下ceph.mon.keyring丢失的解 ...
- Linux ---搭建SFTP服务器
在Centos 6.6环境使用系统自带的internal-sftp搭建SFTP服务器. 打开命令终端窗口,按以下步骤操作. 0.查看openssh的版本 ssh -V 使用ssh -V 命令来查看op ...
- Python_selenium_WebDriver API,ActionChains鼠标, Keys 类键盘
WebDriver 提供的八种定位方法: find_element_by_id() find_element_by_name() find_element_by_class_name() find_e ...
- CVE-2020-1938复现
一.漏洞描述 Tomcat是Apache开源组织开发的用于处理HTTP服务的项目,两者都是免费的,都可以做为独立的Web服务器运行.Apache Tomcat服务器存在文件包含漏洞,攻击 ...
- mysql 重要日志文件总结
作者:丁仪 来源:https://chengxuzhixin.com/blog/post/mysql_zhong_yao_ri_zhi_wen_jian_zong_jie.html 日志是所有应用的重 ...
- gitlab 搭建(基于现有nginx)
普通搭建请看:gitlab 搭建 一.gitlab搭建 1.添加GitLab镜像源并安装gitlab服务器 wget https://mirrors.tuna.tsinghua.edu.cn/gitl ...
- Apifox接口测试管理工具
今天发现开发使用了一款新的接口测试工具,一眼看上去比较清爽,主要全中文界面对比postman的全英文,简直友好太多了. 后续又被业界大佬虫师推荐,于是去官网简单了解了一下,Apifox = Postm ...
- mybatis 动态SQL 源码解析
摘要 mybatis是个人最新喜欢的半自动ORM框架,它实现了SQL和业务逻辑的完美分割,今天我们来讨论一个问题,mybatis 是如何动态生成SQL SqlSessionManager sqlSes ...