port  sys
reload(sys)
sys.setdefaultencoding('utf-8') import matplotlib.pyplot as plt
import numpy as np culster1 = np.random.uniform(0.5, 1.5, (2, 20))
culster2 = np.random.uniform(1.5, 2.5, (2, 20))
culster3 = np.random.uniform(1.5, 3.5, (2, 20))
culster4 = np.random.uniform(3.5, 4.5, (2, 20)) x1 = np.hstack((culster1,culster2))
x2 = np.hstack((culster2,culster3))
x = np.hstack((x1,x2)).T plt.figure()
plt.axis([0, 5, 0, 5])
plt.xlabel('x')
plt.ylabel('y')
plt.grid(True)
plt.plot(x[:,0],x[:,1], 'k.', markersize = 12) from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist kmeans = KMeans(n_clusters = 2)
kmeans.fit(x)
plt.plot(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],'ro') K = range(1, 10)
meandistortions = []
for k in K:
kmeans = KMeans(n_clusters=k)
kmeans.fit(x)
meandistortions.append(sum(np.min(cdist(x, kmeans.cluster_centers_,'euclidean'), axis=1)) / x.shape[0])#选择每行最小距离求和
plt.figure()
plt.grid(True)
plt1 = plt.subplot(2,1,1)
plt1.plot(x[:,0], x[:,1], 'k.')
plt2 = plt.subplot(2,1,2)
plt2.plot(K, meandistortions)

python k-means聚类实例的更多相关文章

  1. 机器学习之路:python k均值聚类 KMeans 手写数字

    python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ...

  2. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  3. Python实现kMeans(k均值聚类)

    Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...

  4. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

  5. 机器学习算法与Python实践之(六)二分k均值聚类

    http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http ...

  6. 100天搞定机器学习|day44 k均值聚类数学推导与python实现

    [如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ...

  7. k近邻聚类简介

    简介 在所有机器学习算法中,k近邻(K-Nearest Neighbors,KNN)相对是比较简单的. 尽管它很简单,但事实证明它在某些任务中非常有效,甚至更好.它可以用于分类和回归问题! 然而,它更 ...

  8. k均值聚类算法原理和(TensorFlow)实现

    顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...

  9. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  10. 第十篇:K均值聚类(KMeans)

    前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...

随机推荐

  1. 在Jenkins的帮助下让我们的应用CI与CD

    上图三位大家应该很熟悉吧,借助这三者可以让我们的服务在Linux环境下持续集成.容器中持续部署. 本篇博客的项目是core webapi, .NET 5.0 在11号已经正式发布了,你们的项目都升级了 ...

  2. leetcode 108 和leetcode 109 II

    //感想:没啥上篇写完了 //思路:对于这道题109来说,就是数组变成了链表,其他没有变,我觉得非常不解,因为我想到的依旧是找中点,用快慢指针来找, 找到以后将链表分成两半,继续递归的去找,我就觉得这 ...

  3. IDEA集成Docker插件后出现日志乱码的解决办法

    修改IDEA的vmoptions文件 找到IDEA安装目录的bin目录,在idea.exe.vmoptions和idea64.exe.vmoptions文件中追加以下内容: -Dfile.encodi ...

  4. 冰河教你一次性成功安装K8S集群(基于一主两从模式)

    写在前面 研究K8S有一段时间了,最开始学习K8S时,根据网上的教程安装K8S环境总是报错.所以,我就改变了学习策略,先不搞环境搭建了.先通过官网学习了K8S的整体架构,底层原理,又硬啃了一遍K8S源 ...

  5. Spring Security + JJWT 实现 JWT 认证和授权

    关于 JJWT 的使用,可以参考之前的文章:JJWT 使用示例 一.鉴权过滤器 @Component public class JwtAuthenticationTokenFilter extends ...

  6. 利用canvas阴影功能与双线技巧绘制轨道交通大屏项目效果

    利用canvas阴影功能与双线技巧绘制轨道交通大屏项目效果 前言 近日公司接到一个轨道系统的需求,需要将地铁线路及列车实时位置展示在大屏上.既然是大屏项目,那视觉效果当然是第一重点,咱们可以先来看看项 ...

  7. HTTP系列(一)URI、URL、URN的区别

    ​1.URI.URL.URN关系图 1)URI Uniform Resource Identifier 统一资源标识符 每个web服务器资源都有一个名字,服务器资源名被统称为统一资源标识符:URI就像 ...

  8. eclispe中打点不会提示的解决方法,以及自动补全

    Eclipse中打点无提示的解决办法 建了个JAVA工程,然后发现输入代码后,在输入.后面不会弹出来我所要的函数.  alt+/      提示No Default Proposals 自己找了半天, ...

  9. jdk版本下载

    oracleJDK oracle各版本下载地址:https://www.oracle.com/technetwork/java/archive-139210.html openJDK 编译好的 ojd ...

  10. PyQt学习随笔:Qt中Model/View中的Model Index

    Qt中Model/View中的Model Index是一个类,该类用于定位Model/View中数据模型中的数据. Model Index是从QAbstractItemModel派生的子类,用于在项视 ...