(十四)json、pickle与shelve模块
任何语言,都有自己的数据类型,那么不同的语言怎么找到一个通用的标准?
比如,后端用Python写的,前端是js,那么后端如果传一个dic字典给前端,前端肯定不认。
所以就有了序列化这个概念。
什么是序列化?
我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输进行前后端交互。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
json、pickle模板都可以实现序列化和反序列化,而我们知道的eval则是反序列化。
json.dumps():将Python对象通通转为字符串
import json
a = 11 #---->'11'
s = 'hello' #---->"hello"------>'"hello"'
l = [1,2] #---->'[1,2]'
dic = {'name':'nick'} #---->{"name":"nick"}----->'{"name":"nick"}' print(json.dumps(a))
print(json.dumps(s))
print(json.dumps(l))
print(json.dumps(dic))
结果:
11 #这四个结果都是字符串
"hello"
[1, 2]
{"name": "nick"}
json.dumps()实际干的两件事:
1.把这个数据中的所有的单引号变为双引号(有单引号就改为双引号,没有就不动)
2.把这个数据变为字符串(在最外面加一对单引号)
json.loads():将字符串转为Python对象(与eval相似)
所以,用json现实文件存储:
import json
dic = {'name':'nick'}
str_dic = json.dumps(dic) #转为字符串
f_write = open('123.txt','w')
f_write.write(str_dic)
f_read = open('123.txt','r')
data = f_read.read()
data = json.loads(data) #转回字典
print(type(data))
print(data)
结果:
<class 'dict'>
{'name': 'nick'}
json
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
注意,只有符合json标准格式规范的字符串,才能被解析。在字符串中,json只认双引号,如下
123.txt:
{"name": "nick"} with open('123.txt','r') as f_read:
res = f_read.read()
res = json.loads(res)
print(type(res))
print(res) 结果:<class 'dict'>
{'name': 'nick'} 123.txt:
{'name': "nick"} #单引号不符合json的标准格式 with open('123.txt','r') as f_read:
res = f_read.read()
res = json.loads(res)
print(type(res))
print(res) 结果:报错
pickle
pickle和json的用法几乎一样,只是json是将Python对象转为字符串去存储或传输,而pickle是将Python对象转为字节去存储或传输,所以pickle适用的数据类型更多,比如类、对象。但是这样的需求场景很少,所以一般来说,我们还是用json。
用pickle现实文件存储:
import pickle
dic = {'name':'nick'}
byte_dic = pickle.dumps(dic)
print(byte_dic)
with open('aaa.txt','wb') as f_write: #由于是byte,所以这里要+b
f_write.write(byte_dic) with open('aaa.txt','rb') as f_read:
date = f_read.read()
print(type(date))
date = pickle.loads(date)
print(type(date))
print(date)
结果:
b'\x80\x03}q\x00X\x04\x00\x00\x00nameq\x01X\x04\x00\x00\x00nickq\x02s.'
<class 'bytes'>
<class 'dict'>
{'name': 'nick'}
用eval内置方法可以将一个字符串转成python对象
用eval现实文件存储:
dic = {'name':'nick','age':20}
f_write = open('123.txt','w')
f_write.write(str(dic)) #写入时直接f_write.write(dic)是报错的,必须转为str
f_read = open('123.txt','r')
data = f_read.read()
print(type(data)) #读取是字符串
data = eval(data) #eval转为字典
print(type(data))
print(data)
结果:
<class 'str'>
<class 'dict'>
{'age': 20, 'name': 'nick'}
不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以就要用json。
用json.dumps()将字典转为字符串是序列化,用json.loads()将字符串转回字典是反序列化
用pickle.dumps()将字典转为字节是序列化,用pickle.loads()将字节转回字典是反序列化
用str()将字典转为字符串是序列化,用eval()将字符串转为字典也是反序列化
shelve
最后,简单了解一下shelve模板,shelve和json、pickle属于同一类,也是用于数据存储和传输。
shelve是将pickle模板再进一步封装,目的就是方便我们使用,可以直接把文件当做一个字典来读和写,也就是直接操作键值对
shelve模块只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型
import shelve #写
f = shelve.open(r'abc.txt') #返回一个类似字典的文件对象
f['name'] = 'nick' #插入键值对
f['info'] = {'age':20,'num':123321} #value是一个字典
f.close() f = shelve.open(r'abc.txt') #读
print(f['info']['age']) #直接当做一个字典来读,二级字典
print(f['name'])
(十四)json、pickle与shelve模块的更多相关文章
- python基础--json,pickle和shelve模块
一.JSON &pickle 用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 字符串必须是双引号,不能是单引号 pickle,用于python特有的类型 和 ...
- python pickle 和 shelve模块
pickle和shelve模块都可以把python对象存储到文件中,下面来看看它们的用法吧 1.pickle 写: 以写方式打开一个文件描述符,调用pickle.dump把对象写进去 dn = {'b ...
- python json、 pickle 、shelve 模块
json 模块 用于序列化的模块 json,用于字符串 和 python数据类型间进行转换 Json模块提供了四个功能:dumps.dump.loads.load #!/usr/bin/env pyt ...
- os常用模块,json,pickle,shelve模块,正则表达式(实现运算符分离),logging模块,配置模块,路径叠加,哈希算法
一.os常用模块 显示当前工作目录 print(os.getcwd()) 返回上一层目录 os.chdir("..") 创建文件包 os.makedirs('python2/bin ...
- 第九节:os、sys、json、pickle、shelve模块
OS模块: os.getcwd()获取当前路径os.chdir()改变目录os.curdir返回当前目录os.pardir()父目录os.makedirs('a/b/c')创建多层目录os.remov ...
- python的pickle和shelve模块
python中用于序列化的模块总结 目录 pickle模块 shelve模块 xml模块 pickle模块 介绍 Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python, ...
- 19-[模块]-json/pickle、shelve
1.序列化? 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes (1)把字典保存到文件 data = { 'roles': [ ...
- json&pickle数据序列化模块
用于序列化的模块 json,通用的序列化方式,序列化成为str类型,支持所有语言识别,序列化的数据具有局限性. pickle,python的所有数据类型都可以被序列化,序列化为bites格式,只适用于 ...
- json pickle xml shelve configparser
json:# 是一种跨平台的数据格式 也属于序列化的一种方式pickle和shevle 序列化后得到的数据 只有python才可以解析通常企业开发不可能做一个单机程序 都需要联网进行计算机间的交互 J ...
随机推荐
- CSS知识点记录
1.浏览器style中显示的样式 这里面的样式,是行内样式或者是使用js添加的样式
- SpringBoot+Redis相关配置文件
springboot整合redis配置类 package com.yalong.config; import com.fasterxml.jackson.annotation.JsonAutoDete ...
- 微信小程序日期转换、比较、加减
直接上干货: 在utils目录下新建一个dateUtil.js,代码如下:(在需要用的地方引入这个js,调用相关方法传入对应参数就可以使用了) 该工具脚本,实用性很高,通用于各类前端项目,熟悉后亦可以 ...
- 新手关于C++ cin 的返回值
cin是C++的标准输入流,其本身是一个对象,并不存在返回值的概念. 不过经常会有类似于 while(cin>>a) 的调用,这里并不是cin的返回值,应该关注">> ...
- 热部署Devtools
在子工程添加devtools的依赖 <dependency> <groupId>org.springframework.boot</groupId> <art ...
- JVM虚拟机(三):Java内存区域
运行时数据区 Java虚拟机再执行Java程序过程中会把它所管理的内存划分为若干个不同分工的数据区域. 程序计数器 程序计数器时一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示 ...
- db2常用操作
1. db2建立远程节点编目及删除 db2 catalog tcpip node nodeName remote remoteIp server remotePort db2 list node di ...
- Spark-6-如何缓解消除数据倾斜
1 尽量避免数据源的数据倾斜 比如数据源是Kafka 以Spark Stream通过DirectStream方式读取Kafka数据为例.由于Kafka的每一个Partition对应Spark的一个Ta ...
- 用DirectX 11绘制一个Cube
之前一篇文章讲了如何初始化DirectX 11,现在在此基础上绘制一个Cube,总体可概括为以下几个步骤: 定义Cube顶点数据结构 创建Vertex Buffer和Index Buffer 编写应用 ...
- 基于Layuimini的自己封装后台模板
基于Layui的后台模板,正在开发中 交流qq群:1062635741 邮箱:zhangqueque.foxmail.com GitHub:https://github.com/ZhangQueque ...