[学习笔记] Numpy基础

上专业选修《数据分析程序设计》课程,老师串讲了Numpy基础,边听边用jupyter敲了下——理解+笔记。

老师讲的很全很系统,有些点没有记录,在PPT里就不搬了。

环境:python3.6 vscode+jupyter扩展

#%%
#------------------------------2019.9.23 NumPy-----------------------------
import numpy as np
# 1.NumPy在一个连续的内存块中存储数据
# 2.性能差异
my_arr = np.arange(100000)
my_list = list(range(10000))
print(my_arr) #%%
# 1.ndarry:一种多维数组对象
data = np.random.randn(2,3)
print(data,'\n')
print(data*10,'\n')
print(data+data,'\n')
# 1.1.ndarry通用的同构数据多为容器——所有元素必须是相同类型的
# .shape 返回表示各维度大小的元组
# .dtype 返回类型
print(data.shape)
print(data.dtype) #%%
# 1.2.创建ndarry
# 1.2.1.用array函数直接创建,dtype自动判定 data_list = [1,1.5,2]
arr1 = np.array(data_list)
print(arr1)
data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
print(arr2.dtype) # 可以用属性ndim和shape验证
arr2.ndim #只返回维数
# eg:arr_empty = np.empty((2,3,4,2))
# arr_empty为4 #%%
#一般numpy创建的数组类型为浮点数
# 1.2.2特定函数创建数组,传入表示形状的元组即可。
# zeros
# ones
# empty 创建一个没有任何具体值的数组
arr_zero = np.zeros(10)
arr_one = np.ones((2,3))
arr_empty = np.empty((2,3,4,2))
print(arr_zero)
print(arr_one)
print(arr_empty)
print(arr_empty.ndim)
# arange
np.arange(15)
# 位矩阵 #%%
# 1.3类型 # 创建时指定
arr3 = np.array([1,2,3])
arr4 = np.array([1,2,3],dtype='float64')
print(arr3.dtype)
print(arr4.dtype) # 转换类型
arr3 = arr3.astype(np.float64)
print(arr3.dtype) # 浮点型转整数——舍弃小数点后
arr_float = np.random.rand(1,10)*10
print(arr_float)
arr_float = arr_float.astype(np.int32)
print(arr_float) # 某字符串数组表示的全是数字,可以直接用astype转为数值形式
arr_string = np.array(['1.0','2.0','3.0'])
print(arr_string.dtype)
arr_string = arr_string.astype(np.float64)
print(arr_string.dtype)
print(arr_string)
#adtype总会创建一个数据备份,即使现类型和目标类型相同 #%%
# 1.4运算
arr = np.array([[1.,2.,3.], [4.,5.,6.]])
print(arr)
print(arr-arr)
print(arr*arr)
print(1/arr)
print(arr**0.5) #和标量运算,数组每个元素都和此标量运算
arr_compare = np.array([ [0,4,1], [7,2,12] ])
print(arr_compare > arr) #%%
# 1.5切片、索引
# 对数字切片的修改,是直接对数组本身修改(python的list列表不是,是对副本操作)
# 对ndarray切片的副本操作:arr[5:8].cpoy()。这样不更改原数组
arr_sl = np.arange(10)
print(arr_sl)
arr_sl[3:6] = 999 #广播
print(arr_sl)
arr_slice = arr_sl[3:6]
arr_slice[:] = 888
print(arr_sl) li = list(range(10))
list_slice = li[2:8]
list_slice[0] = 666
print(list_slice)
print(li) arr2d = np.array([[1.,2.,3.], [4.,5.,6.]])
#索引
print(arr2d[0][1])
#同
print(arr2d[0,1])
#多维数组中,若省略了后面的索引,则返回对象是一个维度低一点的ndarray
arr3d = np.array([ [ [1,2,3],[4,5,6] ], [ [7,8,9],[10,11,12] ] ])
print(arr3d.shape)
print(arr3d)
print(arr3d[0,1]) # 访问索引已(0,1)开头的那些值
arr3d[0] = 999
print(arr3d) #%%
#1.6布尔
# 布尔型索引选取数组中的数据,总是创建副本,即使返回一模一样的数组也是
names = np.array(['Bob','Peter','Bob','Jenny'])
data_arr = np.random.randn(4,7)
print(data_arr)
arr_bool = names=='Bob'
print(arr_bool) #[ True False True False]
print(data_arr[arr_bool])
print('------------------------')
print(data_arr[names=='Bob',5:]) #选取Bob,并索引列 #%%
# 1.6.2 布尔取反
# way1:
names!='Bob'
# way2:
data_arr[~(names=='Bob')] #%%
# 1.6.3 布尔组合
mask = (names=='Bob')|(names=='Peter')
data_arr[mask] data_arr[data_arr>1] #%%
# 1.7花式索引
# 为了按特定顺序选中数据,那么传入表示顺序的[]即可
data = np.arange(80).reshape((8,10))
data[[3,1,4]] data[[1,5,3],[0,3,2]] #返回(1,0),(5,3),(3,2)位置的数据
data[[1,5,7,2]][:,[0,3,1,2]] #列所有元素都输出,但按0 3 1 2的顺序
# 行 列 #%%
# 1.7.1花式索引的转置
# 花式索引和切片不一样,它总是副本
# 转置不是副本,是本身
arr = np.arange(15).reshape((3,5))
arr.T
# transpose 高维数组转置 #%%
# 2.通用数组
arr = np.arange(10)
print(np.sqrt(arr))
print(arr) # 每个位置上,最大的那个
# np.maximum(x,y) # 分别返回小数部分、整数部分
remainder, whole_part = np.modf(arr)
print(remainder)
print(whole_part) # abs
# square
# exp
# log log10 log2 log1p
# ... #%%
# 3利用数组进行数据处理 # 3.1
points = np.arange(-5,5,0.01)
xs,ys = np.meshgrid(points,points) # 生成网格点坐标矩阵
ys # 3.2 np.where
arr = np.random.randn(3,4)
print(arr)
print(np.where(arr>0,2,-2)) # 3.3数学和统计方法
# 既可以当实例方法,也可以当顶级numpy函数用
print(arr.mean()) # 对特定轴向
arr.mean(axis=0) #对列求
# 或
arr.mean(0) arr.sort(1) #对行排序就地排序 np.unique(arr) #删除重复的元素 # cumsum对特定轴
arr = np.arange(9).reshape(3,3)
print(arr)
print(arr.cumsum(1))
# 同理 cumprod 累乘 # 对布尔型
arr = np.random.randn(100)
print( (arr>0).sum() )
# any() 检查数组中是否存在>=1个True
# all() 检查数组中是否全为True #%%
# 4.线性代数
# x.dot(y) 同 np.dot(x,y) # diag 返回对角线矩阵
# trace
# det
# eig
# inv
# pinv
# qr
# svd #%%
# 5.伪随机数生成
# 正态分布
samples = np.random.normal(size=(3,3))
# 标准整体分布
ss = np.random.randn(3)
# 给定上下限随机整数
sss = np.random.randint(10,size=(4)) # [4 6 4 1]

[学习笔记] Numpy基础 系统学习的更多相关文章

  1. Linux学习笔记之——基础命令学习

    1.find 按照名字查找:find / -name file_name   2.zip压缩 1) 我想把一个文件repartition.txt和一个目录invader压缩成为amateur.zip: ...

  2. Python学习笔记之基础篇(-)python介绍与安装

    Python学习笔记之基础篇(-)初识python Python的理念:崇尚优美.清晰.简单,是一个优秀并广泛使用的语言. python的历史: 1989年,为了打发圣诞节假期,作者Guido开始写P ...

  3. MyBatis:学习笔记(1)——基础知识

    MyBatis:学习笔记(1)--基础知识 引入MyBatis JDBC编程的问题及解决设想 ☐ 数据库连接使用时创建,不使用时就释放,频繁开启和关闭,造成数据库资源浪费,影响数据库性能. ☐ 使用数 ...

  4. C#学习笔记(基础知识回顾)之值类型和引用类型

    一:C#把数据类型分为值类型和引用类型 1.1:从概念上来看,其区别是值类型直接存储值,而引用类型存储对值的引用. 1.2:这两种类型在内存的不同地方,值类型存储在堆栈中,而引用类型存储在托管对上.存 ...

  5. mybatis学习笔记之基础复习(3)

    mybatis学习笔记之基础复习(3) mybatis是什么? mybatis是一个持久层框架,mybatis是一个不完全的ORM框架.sql语句需要程序员自己编写, 但是mybatis也是有映射(输 ...

  6. Quartz学习笔记:基础知识

    Quartz学习笔记:基础知识 引入Quartz 关于任务调度 关于任务调度,Java.util.Timer是最简单的一种实现任务调度的方法,简单的使用如下: import java.util.Tim ...

  7. ELK-6.5.3学习笔记–elk基础环境安装

    本文预计阅读时间 13 分钟 文章目录[隐藏] 1,准备工作. 2,安装elasticsearch. 3,安装logstash. 4,安装kibana 以往都是纸上谈兵,毕竟事情也都由部门其他小伙伴承 ...

  8. Java后端高频知识点学习笔记1---Java基础

    Java后端高频知识点学习笔记1---Java基础 参考地址:牛_客_网 https://www.nowcoder.com/discuss/819297 1.重载和重写的区别 重载:同一类中多个同名方 ...

  9. bootstrap学习笔记之基础导航条 http://www.imooc.com/code/3111

    基础导航条 在Bootstrap框中,导航条和导航从外观上差别不是太多,但在实际使用中导航条要比导航复杂得多.我们先来看导航条中最基础的一个--基础导航条. 使用方法: 在制作一个基础导航条时,主要分 ...

随机推荐

  1. bzoj3375[Usaco2004 Mar]Paranoid Cows 发疯的奶牛*

    bzoj3375[Usaco2004 Mar]Paranoid Cows 发疯的奶牛 题意: 依次给出n只奶牛的产奶时间段,求最大的k使得前k只奶牛不存在一个时间段被另一个时间段完全覆盖的情况.n≤1 ...

  2. JavaScript 基础 学习 (四)

    JavaScript 基础 学习 (四) 解绑事件 dom级 事件解绑 ​ 元素.on事件类型 = null ​ 因为赋值的关系,所以给事件赋值为 null 的时候 ​ 事件触发的时候,就没有事件处理 ...

  3. xilinx fpga 生成3*3窗口

    在写滤波程序的时候在网上看了好几篇大佬的笔记,都有提到使用3*3窗口,由于小白一个,看到复杂的理论就惧怕的不行.但是现在不得不上,自己调用移位寄存器ip核然后做了个3*3窗口出来,自己动手作出来忽然感 ...

  4. Python实现初始化不同的变量类型为空值

    常见的数字,字符,很简单,不多解释. 列表List的其值是[x,y,z]的形式 字典Dictionary的值是{x:a, y:b, z:c}的形式 元组Tuple的值是(a,b,c)的形式 所以,这些 ...

  5. jenkins集群(二)(master --> slave) -- allure自动化测试报告部署

    一.前提 1.环境 1)已经部署好了jenkins环境,包括jenkins的“全局工具配置”也配好了. 2.master与slave的简单的概念 1)master:jenkins部署所在的机器 2)s ...

  6. SQL 更新删除

    -- 插入数据 INSERT INTO [ Salary ] VALUES(25451,4545,45 ) INSERT INTO [ Salary ] (编号,收入,支出) VALUES(25451 ...

  7. 【新生学习】第一周:深度学习及pytorch基础

    DEADLINE: 2020-07-25 22:00 写在最前面: 本课程的主要思路还是要求大家大量练习 pytorch 代码,在写代码的过程中掌握深度学习的各类算法,希望大家能够坚持练习,相信经度过 ...

  8. 我自己总结的sqlite的命令行命令集

    我自己总结的sqlite 的命令行命令 导入文本数据文件时,设置分隔符为","sql>.separator "," sql>import devic ...

  9. 使用matlab进行傅里叶分析和滤波

    傅里叶分析 公式法 下例 是将振幅为1的5Hz正弦波和振幅为0.5的10Hz正弦波相加之后进行傅里叶分析. clear all N=512; dt=0.02; n=0:N-1; t=n*dt; x=s ...

  10. 5万字长文:Stream和Lambda表达式最佳实践-附PDF下载

    目录 1. Streams简介 1.1 创建Stream 1.2 Streams多线程 1.3 Stream的基本操作 Matching Filtering Mapping FlatMap Reduc ...