MySQL :: MySQL 8.0 Reference Manual :: 8.3.9 Comparison of B-Tree and Hash Indexes https://dev.mysql.com/doc/refman/8.0/en/index-btree-hash.html

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the search more quickly.

Turbo-BM algorithm http://igm.univ-mlv.fr/~lecroq/string/node15.html

Boyer-Moore algorithm http://igm.univ-mlv.fr/~lecroq/string/node14.html#SECTION00140

Boyer-Moore algorithm


  • performs the comparisons from right to left;
  • preprocessing phase in O(m+) time and space complexity;
  • searching phase in O(mn) time complexity;
  • 3n text character comparisons in the worst case when searching for a non periodic pattern;
  • O(n / m) best performance.

The Boyer-Moore algorithm is considered as the most efficient string-matching algorithm in usual applications. A simplified version of it or the entire algorithm is often implemented in text editors for the «search» and «substitute» commands.

The algorithm scans the characters of the pattern from right to left beginning with the rightmost one. In case of a mismatch (or a complete match of the whole pattern) it uses two precomputed functions to shift the window to the right. These two shift functions are called the good-suffix shift (also called matching shift and the bad-character shift (also called the occurrence shift).

Assume that a mismatch occurs between the character x[i]=a of the pattern and the character y[i+j]=b of the text during an attempt at position j.
Then, x[i+1 .. m-1]=y[i+j+1 .. j+m-1]=u and x[i y[i+j]. The good-suffix shift consists in aligning the segment y[i+j+1 .. j+m-1]=x[i+1 .. m-1] with its rightmost occurrence in x that is preceded by a character different from x[i](see figure 13.1).

Figure 13.1. The good-suffix shift, u re-occurs preceded by a character c different from a.

If there exists no such segment, the shift consists in aligning the longest suffix v of y[i+j+1 .. j+m-1] with a matching prefix of x (see figure 13.2).

Figure 13.2. The good-suffix shift, only a suffix of u re-occurs in x.

The bad-character shift consists in aligning the text character y[i+j] with its rightmost occurrence in x[0 .. m-2]. (see figure 13.3)

Figure 13.3. The bad-character shift, a occurs in x.

If y[i+j] does not occur in the pattern x, no occurrence of x in y can include y[i+j], and the left end of the window is aligned with the character immediately after y[i+j], namely y[i+j+1] (see figure 13.4).

Figure 13.4. The bad-character shift, b does not occur in x.

Note that the bad-character shift can be negative, thus for shifting the window, the Boyer-Moore algorithm applies the maximum between the the good-suffix shift and bad-character shift. More formally the two shift functions are defined as follows.

The good-suffix shift function is stored in a table bmGs of size m+1.

Let us define two conditions:
  Cs(is): for each k such that i < k < ms  k or x[k-s]=x[k] and
  Co(is): if s <i then x[i-s x[i]

Then, for 0  i < mbmGs[i+1]=min{s>0 : Cs(is) and Co(is) hold}
and we define bmGs[0] as the length of the period of x. The computation of the table bmGs use a table suff defined as follows: for 1  i < msuff[i]=max{k : x[i-k+1 .. i]=x[m-k .. m-1]}

The bad-character shift function is stored in a table bmBc of size . For c in bmBc[c] = min{i : 1  i <m-1 and x[m-1-i]=c} if c occurs in xm otherwise.

Tables bmBc and bmGs can be precomputed in time O(m+) before the searching phase and require an extra-space in O(m+). The searching phase time complexity is quadratic but at most 3n text character comparisons are performed when searching for a non periodic pattern. On large alphabets (relatively to the length of the pattern) the algorithm is extremely fast. When searching for am-1b in bn the algorithm makes only O(n / m) comparisons, which is the absolute minimum for any string-matching algorithm in the model where the pattern only is preprocessed.

The C code

void preBmBc(char *x, int m, int bmBc[]) {
int i; for (i = 0; i < ASIZE; ++i)
bmBc[i] = m;
for (i = 0; i < m - 1; ++i)
bmBc[x[i]] = m - i - 1;
} void suffixes(char *x, int m, int *suff) {
int f, g, i; suff[m - 1] = m;
g = m - 1;
for (i = m - 2; i >= 0; --i) {
if (i > g && suff[i + m - 1 - f] < i - g)
suff[i] = suff[i + m - 1 - f];
else {
if (i < g)
g = i;
f = i;
while (g >= 0 && x[g] == x[g + m - 1 - f])
--g;
suff[i] = f - g;
}
}
} void preBmGs(char *x, int m, int bmGs[]) {
int i, j, suff[XSIZE]; suffixes(x, m, suff); for (i = 0; i < m; ++i)
bmGs[i] = m;
j = 0;
for (i = m - 1; i >= 0; --i)
if (suff[i] == i + 1)
for (; j < m - 1 - i; ++j)
if (bmGs[j] == m)
bmGs[j] = m - 1 - i;
for (i = 0; i <= m - 2; ++i)
bmGs[m - 1 - suff[i]] = m - 1 - i;
} void BM(char *x, int m, char *y, int n) {
int i, j, bmGs[XSIZE], bmBc[ASIZE]; /* Preprocessing */
preBmGs(x, m, bmGs);
preBmBc(x, m, bmBc); /* Searching */
j = 0;
while (j <= n - m) {
for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i);
if (i < 0) {
OUTPUT(j);
j += bmGs[0];
}
else
j += MAX(bmGs[i], bmBc[y[i + j]] - m + 1 + i);
}
}

Preprocessing phase

mBc and bmGs tables used by Boyer-Moore algorithm

Searching phase

  • AHO, A.V., 1990, Algorithms for finding patterns in strings. in Handbook of Theoretical Computer Science, Volume A, Algorithms and complexity, J. van Leeuwen ed., Chapter 5, pp 255-300, Elsevier, Amsterdam.
  • AOE, J.-I., 1994, Computer algorithms: string pattern matching strategies, IEEE Computer Society Press.
  • BAASE, S., VAN GELDER, A., 1999, Computer Algorithms: Introduction to Design and Analysis, 3rd Edition, Chapter 11, pp. ??-??, Addison-Wesley Publishing Company.
  • BAEZA-YATES R., NAVARRO G., RIBEIRO-NETO B., 1999, Indexing and Searching, in Modern Information Retrieval, Chapter 8, pp 191-228, Addison-Wesley.
  • BEAUQUIER, D., BERSTEL, J., CHRÉTIENNE, P., 1992, Éléments d'algorithmique, Chapter 10, pp 337-377, Masson, Paris.
  • BOYER R.S.MOORE J.S., 1977, A fast string searching algorithm. Communications of the ACM. 20:762-772.
  • COLE, R., 1994, Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm, SIAM Journal on Computing 23(5):1075-1091.
  • CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L., 1990. Introduction to Algorithms, Chapter 34, pp 853-885, MIT Press.
  • CROCHEMORE, M., 1997. Off-line serial exact string searching, in Pattern Matching Algorithms, ed. A. Apostolico and Z. Galil, Chapter 1, pp 1-53, Oxford University Press.
  • CROCHEMORE, M., HANCART, C., 1999, Pattern Matching in Strings, in Algorithms and Theory of Computation Handbook, M.J. Atallah ed., Chapter 11, pp 11-1--11-28, CRC Press Inc., Boca Raton, FL.
  • CROCHEMORE, M., LECROQ, T., 1996, Pattern matching and text compression algorithms, in CRC Computer Science and Engineering Handbook, A. Tucker ed., Chapter 8, pp 162-202, CRC Press Inc., Boca Raton, FL.
  • CROCHEMORE, M., RYTTER, W., 1994, Text Algorithms, Oxford University Press.
  • GONNET, G.H., BAEZA-YATES, R.A., 1991. Handbook of Algorithms and Data Structures in Pascal and C, 2nd Edition, Chapter 7, pp. 251-288, Addison-Wesley Publishing Company.
  • GOODRICH, M.T., TAMASSIA, R., 1998, Data Structures and Algorithms in JAVA, Chapter 11, pp 441-467, John Wiley & Sons.
  • GUSFIELD, D., 1997, Algorithms on strings, trees, and sequences: Computer Science and Computational Biology, Cambridge University Press.
  • HANCART, C., 1993. Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte, Ph. D. Thesis, University Paris 7, France.
  • KNUTH, D.E., MORRIS (Jr) J.H., PRATT, V.R., 1977, Fast pattern matching in strings, SIAM Journal on Computing6(1):323-350.
  • LECROQ, T., 1992, Recherches de mot, Ph. D. Thesis, University of Orléans, France.
  • LECROQ, T., 1995, Experimental results on string matching algorithms, Software - Practice & Experience 25(7):727-765.
  • SEDGEWICK, R., 1988, Algorithms, Chapter 19, pp. 277-292, Addison-Wesley Publishing Company.
  • SEDGEWICK, R., 1988, Algorithms in C, Chapter 19, Addison-Wesley Publishing Company.
  • STEPHEN, G.A., 1994, String Searching Algorithms, World Scientific.
  • WATSON, B.W., 1995, Taxonomies and Toolkits of Regular Language Algorithms, Ph. D. Thesis, Eindhoven University of Technology, The Netherlands.
  • WIRTH, N., 1986, Algorithms & Data Structures, Chapter 1, pp. 17-72, Prentice-Hall.
 
 
 

Turbo Boyer-Moore algorithm的更多相关文章

  1. Leetcode OJ : Implement strStr() [ Boyer–Moore string search algorithm ] python solution

    class Solution { public: int strStr(char *haystack, char *needle) { , skip[]; char *str = haystack, ...

  2. Boyer–Moore (BM)字符串搜索算法

    在计算机科学里,Boyer-Moore字符串搜索算法是一种非常高效的字符串搜索算法.它由Bob Boyer和J Strother Moore设计于1977年.此算法仅对搜索目标字符串(关键字)进行预处 ...

  3. Boyer Moore算法(字符串匹配)

    上一篇文章,我介绍了KMP算法. 但是,它并不是效率最高的算法,实际采用并不多.各种文本编辑器的"查找"功能(Ctrl+F),大多采用Boyer-Moore算法. Boyer-Mo ...

  4. Algorithm: pattern searching

    kmp算法:用一个数组保存了上一个需要开始搜索的index,比如AAACAAA就是0, 1, 2, 0, 1, 2, 3, ABCABC就是0, 0, 0, 1, 2, 3,复杂度O(M+N) #in ...

  5. Boyer-Moore 字符串匹配算法

    字符串匹配问题的形式定义: 文本(Text)是一个长度为 n 的数组 T[1..n]: 模式(Pattern)是一个长度为 m 且 m≤n 的数组 P[1..m]: T 和 P 中的元素都属于有限的字 ...

  6. Majority Element问题---Moore's voting算法

    Leetcode上面有这么一道难度为easy的算法题:找出一个长度为n的数组中,重复次数超过一半的数,假设这样的数一定存在.O(n2)和O(nlog(n))(二叉树插入)的算法比较直观.Boyer–M ...

  7. Erlang/Elixir精选-第5期(20200106)

    The forgotten ideas in computer science-Joe Armestrong 在2020年的第一期里面,一起回顾2018年Joe的 The forgotten idea ...

  8. grep之字符串搜索算法Boyer-Moore由浅入深(比KMP快3-5倍)

    这篇长文历时近两天终于完成了,前两天帮网站翻译一篇文章“为什么GNU grep如此之快?”,里面提及到grep速度快的一个重要原因是使用了Boyer-Moore算法作为字符串搜索算法,兴趣之下就想了解 ...

  9. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

  10. leetcode 229 Majority Element II

    这题用到的基本算法是Boyer–Moore majority vote algorithm wiki里有示例代码 1 import java.util.*; 2 public class Majori ...

随机推荐

  1. Winform Dock顺序调整

    在布局的时候,当一个窗体内有多个控件使用了Dock属性来布局,Dock顺序的调整: 最近被.net winform中的控件布局搞困惑了,由于控件都是使用Dock方式的,操作起来也是比较方便,如果最大化 ...

  2. 浅析 TensorFlow Runtime 技术

    关于 TF Runtime 的疑问? 什么是TFRT ? TensorFlow Runtime,简称 TFRT,它提供了统一的.可扩展的基础架构层,可以极致地发挥CPU多线程性能,支持全异步编程(无锁 ...

  3. BP暴力破解

    BurpSuite暴力破解 1.设置代理 首先要用phpstudy打开Mysql和Apache,然后将设置浏览器代理,地址127.0.0.1  端口8080 2.进入dvwa靶场 进入dvwa时,要用 ...

  4. JPA 复杂查询 - Querydsl

     添加依赖 <!--query dsl --> <dependency> <groupId>com.querydsl</groupId> <art ...

  5. NIO 的工作方式

    NIO 的工作方式 BIO 带来的挑战 BIO : BIO 通信模型,通常由一个独立的 Acceptor 线程负责监听客户端的连接,接受到请求之后,为每个客户端创建一个新的线程进行链路处理,处理完成之 ...

  6. spring mvc与mybatis事务整合

    之前公司用的是mybatis,但事务管理这块是用ejb的CMT容器管理的事务.基本原理是ejb请求进来,业务代码会创建一个mybatis的session然后放入当前线程,之后所有的方法操作涉及到数据库 ...

  7. Java学习日报7.29

    package student;import java.util.*;public class student { Scanner sc=new Scanner(System.in); private ...

  8. 基于snort、barnyard2和base的 网络入侵检测系统的部署与应用

    1.项目分析 1.1.项目背景 伴随着互联网产业的不迅猛发展,新兴技术层数不穷,互联网通讯技术逐渐成为了各行各业不可替代的基础设施,越来越多的业务都是依靠互联网来得以实现.随着我国科技产业的飞速发展, ...

  9. b站视频下载技术分享

    最近无聊分析了一下b站的视频流协议,简单分享下爬取的流程. 首先先要找到视频对应的aid和cid,aid就相当于av号,而av号对应网页下的每一个视频都有对应的cid,普通视频就是分p,番剧就是集数, ...

  10. 第三章 存储器的扩展(二)——> 重要

    3.2 主存储器 四.只读存储器(ROM)---->了解(考试也可能会考) 掩膜ROM(MROM) 行列选择线交叉处有 MOS 管为"1" 行列选择线交叉处无 MOS 管为& ...