例题 P1169 [ZJOI2007]棋盘制作

题目描述

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8×88 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。

而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。

小Q找到了一张由N×MN \times MN×M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。

不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。

于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

输入输出格式

输入格式:

包含两个整数NNN和MMM,分别表示矩形纸片的长和宽。接下来的NNN行包含一个N ×MN \ \times MN ×M的010101矩阵,表示这张矩形纸片的颜色(000表示白色,111表示黑色)。

输出格式:

包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。

审题可以发现,我们所以寻找的最大矩形其实已经含有正方形,所以不需要单独去寻找,但是当时我只想到如何DP求正方形,所以分开写了;

这里就引进一个概念——悬线法

用途:

  求满足条件的最大矩形或正方形

方法:

  通过不断更新矩形左右端点所能到达的距离(1 : 初始化;2:dp中更新)

定义:

  left [ i ] [ j ] 数组更新包含第(i,j)点的最左能到达距离;

  right [ i ] [ j ] 数组更新包含第(i,j)点的最右能到达距离;

  up [ i ] [ j ] 数组更新包含第(i,j)点的向上能到达的距离;

  PS:为什么没有下?因为down可以在dp中用up代替;

步骤:

  1:初始化 left 和 right 数组

  

for(int i=1;i<=n;i++){
for(int j=m-1;j>0;j--){
if(maps[i][j]!=maps[i][j+1])//判断条件
right[i][j]=right[i][j+1];
}//右端点从右往左更新
for(int j=2;j<=m;j++){
if(maps[i][j-1]!=maps[i][j])
left[i][j]=left[i][j-1];
}//左端点从左往右更新
}

  2:DP更新 up 数组和 left,right 数组

  for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i!=1&&maps[i][j]!=maps[i-1][j]){
left[i][j]=max(left[i][j],left[i-1][j]);//由上更新
right[i][j]=min(right[i][j],right[i-1][j]);
//左取大,右取小
up[i][j]=up[i-1][j]+1;
}
int a=right[i][j]-left[i][j]+1;
int b=min(a,up[i][j]);
ans1=max(ans1,b*b);//正方形做法2
ans2=max(ans2,a*up[i][j]);
}
}

  思考:该方法的正确性,因为每个点都取到了一次,每次选取最优解,则正解定会取到

完整Code(附有正方形另类做法)

#include<cstdio>
#define maxn 2007
using namespace std;
int n,m,maps[maxn][maxn],ans1;
int f1[maxn][maxn],ans2,up[maxn][maxn];
int left[maxn][maxn],right[maxn][maxn];
int min(int a,int b){return a<b?a:b;}
int max(int a,int b){return a>b?a:b;} void cube(){
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int x=maps[i][j];
if(x==maps[i-1][j]||x==maps[i][j-1]||x!=maps[i][j]){
f1[i][j]=1;
}else {
f1[i][j]=min(f1[i-1][j],min(f1[i][j-1],f1[i-1][j-1]))+1;
}
ans1=max(f1[i][j],ans1);
}
}
ans1*=ans1;
} int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&maps[i][j]);
left[i][j]=j,right[i][j]=j;
up[i][j]=1;
}
}
cube();//正方形的做法1
for(int i=1;i<=n;i++){
for(int j=m-1;j>0;j--){
if(maps[i][j]!=maps[i][j+1])//判断条件
right[i][j]=right[i][j+1];
}//右端点从右往左更新
for(int j=2;j<=m;j++){
if(maps[i][j-1]!=maps[i][j])
left[i][j]=left[i][j-1];
}//左端点从左往右更新
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i!=1&&maps[i][j]!=maps[i-1][j]){
left[i][j]=max(left[i][j],left[i-1][j]);//由上更新
right[i][j]=min(right[i][j],right[i-1][j]);
//左取大,右取小
up[i][j]=up[i-1][j]+1;
}
int a=right[i][j]-left[i][j]+1;
int b=min(a,up[i][j]);
ans1=max(ans1,b*b);//正方形做法2
ans2=max(ans2,a*up[i][j]);
}
}
printf("%d\n%d\n",ans1,ans2);
return 0;
}

总结与反思;正确灵活使用,可以快速解决问题;

悬线法——有套路的DP的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  2. 洛谷P1169 棋盘制作【悬线法】【区间dp】

    题目:https://www.luogu.org/problemnew/show/P1169 题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形. 思路:传说中的悬线法!用下面这张图说明一下 ...

  3. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  4. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  5. P4147 玉蟾宫 二维DP 悬线法

    题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...

  6. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  7. hdu4328(经典dp用悬线法求最大子矩形)

    http://wenku.baidu.com/view/728cd5126edb6f1aff001fbb.html 关于悬线法,这里面有详解. 我当时只想到了记录最大长度,却没有想到如果连最左边和最右 ...

  8. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  9. 悬线法DP总结

    悬线法DP总结 问题模型 求满足某种条件(如01交替)的最大矩形(正方形) 思想 先预处理出\(ml[i][j],mr[i][j],mt[i][j]\),分别表示当前位置\((i,j)\)能向左扩展到 ...

随机推荐

  1. 【SpringBoot1.x】RestfulCRUD

    SpringBoot1.x RestfulCRUD 文章源码 添加资源 将所有的静态资源都添加到 src/main/resources/static 文件夹下,所有的模版资源都添加到 src/main ...

  2. Openstack glance 镜像服务 (五)

    Openstack glance 镜像服务 (五) 引用: 官方文档glance安装 https://docs.openstack.org/ocata/zh_CN/install-guide-rdo/ ...

  3. .NET探索平台条件编译

    前言 今天偶然机会,翻了一下大学期间的书籍<C程序设计>,好吧,当我翻着翻着,翻到了符号常量(#define指令)中,是啊,这是一个预处理器指令,记得在Magicodes.IE中针对平台选 ...

  4. mybatis中传集合时 报异常 invalid comparison: java.util.Arrays$ArrayList and java.lang.String

    犯了一个低级的错误,在传集合类型的参数时,把他当成字符串处理了,导致报类型转换的错误 把  and nsrsbh!=' ' 删掉就行了

  5. CodeMonkey少儿编程第3章 times循环

    目标 了解程序由哪三种基本的结构组成 了解循环的概念 掌握times的结构与用法 三种基本结构 计算机程序由三种最基本的结构组成,它们分别是: 顺序结构 循环结构 选择结构 千万不要被这些陌生的术语给 ...

  6. 一个非常棒的Go-Json解析库

    json是一种数据格式,经常被用作数据交换,页面展示,序列化等场景,基本每种语言都有对应的json解析框架,Go语言也不例外,并且内置了json库,基本能够满足一些普通开发场景,但有些复杂场景下就不太 ...

  7. ././include/linux/kconfig.h:4:32: fatal error: generated/autoconf.h: No such file or directory 解决办法

    我在编写内核驱动模块的时候报了一个非常奇怪的错误,如下图: 在目录下看了一下确实没有发现这个文件,感觉很奇怪,因为我记得之前编译模块是没有错误的,所以不可能是我代码写的有问题. 查阅了资料很多说要清除 ...

  8. kotlin和python哪个好!程序员怎样优雅度过35岁中年危机?满满干货指导

    导语 学历永远是横在我们进人大厂的一道门槛,好像无论怎么努力,总能被那些985,211 按在地上摩擦! 不仅要被"他们"看不起,在HR挑选简历,学历这块就直接被刷下去了,连证明自己 ...

  9. 什么是STP

    简介 了解STP 配置STP 相关信息 简介 STP(Spanning Tree Protocol)是运行在交换机上的二层破环协议,环路会导致广播风暴.MAC地址表震荡等后果,STP的主要目的就是确保 ...

  10. 时序数据库 Apache-IoTDB 源码解析之元数据索引块(六)

    上一章聊到 TsFile 索引块的详细介绍,以及一个查询所经过的步骤.详情请见: 时序数据库 Apache-IoTDB 源码解析之文件索引块(五) 打一波广告,欢迎大家访问 IoTDB 仓库,求一波 ...