【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)
题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账。
解法:带权并查集+前缀和。
判断账本真假是通过之前可算到的答案与当前读入的值是否相同来完成。那么就是只有知道新读入的区间2端的(在相同区域内的!!)前缀和才可以判断,也就是这2个端点之前被纳入了相同的区域内才可以判断。于是,我们就可以想到并查集了。(( ′◔ ‸◔`) 真的么......)
假设已知x~y月的总收入为d,那么s[y]-s[x-1]=d。一般前缀和是算上自己的,这里我理解s[i]为在 i 所在的区域内 i 之前的数的大小。接着,当x,y不在相同区域内时就将其合并,在时就判断。
P.S.网上似乎还有人用查分约束的方法做。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=105,M=1005;
8 int n,m;
9 int fa[N],f[N];
10 bool flag;
11
12 int ffind(int x)
13 {
14 if (fa[x]!=x)
15 {
16 int fx=fa[x];
17 fa[x]=ffind(fx);
18 f[x]+=f[fx];
19 }
20 return fa[x];
21 }
22 void ins(int x,int y,int d)
23 {
24 int fx=ffind(x),fy=ffind(y);
25 if (fx!=fy)
26 {
27 fa[fx]=fy;//at ease
28 f[fx]=f[y]+d-f[x];
29 }
30 else if (f[x]-f[y]!=d) flag=false;
31 }
32 int main()
33 {
34 int T;
35 scanf("%d",&T);
36 while (T--)
37 {
38 int x,y,d;
39 scanf("%d%d",&n,&m);
40 flag=true;
41 for (int i=0;i<=n;i++) fa[i]=i,f[i]=0;
42 for (int i=1;i<=m;i++)
43 {
44 scanf("%d%d%d",&x,&y,&d);//s[y]-s[x-1]=d
45 if (flag) ins(x-1,y,d);
46 }
47 if (flag) printf("true\n");
48 else printf("false\n");
49 }
50 return 0;
51 }
我再附个简图好了,自己真心理解了很久很久~(┬_┬)模版题设这个:【poj 1962】Corporative Network(图论--带权并查集 模版题)
当然画 树 应该比画方块更好,我是因为接触带权并查集的第一题是【poj 1988】Cube Stacking(图论--带权并查集),所以才理解代码这些都是这样看的。这样的图是可以理解的,画树更本质,更好。

【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)的更多相关文章
- Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)
题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...
- 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)
题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...
- BZOJ1202:狡猾的商人(带权并查集)
1202: [HNOI2005]狡猾的商人 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1202 Description: 刁姹接到一个 ...
- 1202. [HNOI2005]狡猾的商人【贪心 或 并查集】
Description 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i=1,2,3...n-1,n), .当 ...
- 【poj 1182】食物链(图论--带权并查集)
题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...
- 【poj 1962】Corporative Network(图论--带权并查集 模版题)
P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...
- 【poj 1988】Cube Stacking(图论--带权并查集)
题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...
- BZOJ 1202: [HNOI2005]狡猾的商人 [带权并查集]
题意: 给出m个区间和,询问是否有区间和和之前给出的矛盾 NOIp之前做过hdu3038..... 带权并查集维护到根的权值和,向左合并 #include <iostream> #incl ...
- BZOJ 1202: [HNOI2005]狡猾的商人( 差分约束 )
好像很多人用并查集写的... 前缀和, 则 sumt - sums-1 = v, 拆成2条 : sumt ≤ sums-1 + v, sums-1 ≤ sumt - v 就是一个差分约束, 建图跑SP ...
随机推荐
- Tomcat配置上遇到的一些问题
Tomcat启动:在bin目录下双击startup.bat文件就行. 访问:在浏览器输入http://localhost:8080 回车访问的是自己 的界面: http://othersip:8080 ...
- c++ 参数传递与返回值详解(reference)
pass by value or pass by reference? 我们知道,当函数在传递值的时候,会新建一个变量(没有名字)储存这个值 然后传递.降低程序运行的效率. 如果使用引用(refere ...
- 【十天自制软渲染器】DAY 02:画一条直线(DDA 算法 & Bresenham’s 算法)
推荐关注公众号「卤蛋实验室」或访问博客原文,更新更及时,阅读体验更佳 第一天我们搭建了 C++ 的运行环境并画了一个点,根据 点 → 线 → 面 的顺序,今天我们讲讲如何画一条直线. 本文主要讲解直线 ...
- 【Oracle】从删除的recyclebin中查看并恢复数据
如果数据库中用了drop删除表,后面没有加上purge的话,会出现在oracle的回收机制中 dba_recyclebin可以查看当前删除的都是哪些 这个只是部分截图,可以看到删除的对象是什么,删除的 ...
- VPS下环境漏洞部署
No.1 声明 1.由于本环节运行在公网,如何同样复现情况,复现成功后请立即关闭环境! 2.本环境仅用于漏洞复现! No.2 安装docker curl -s https://get.docker.c ...
- JCO RFC destination
一:登陆PI的GUI,进入事物SM59,创建T类型RFC destinations如下: AI_RUNTIME_JCOSERVER :used for the mapping runtime, va ...
- kafka(二)基本使用
一.Kafka线上集群部署方案 既然是集群,那必然就要有多个Kafka节点机器,因为只有单台机器构成的kafka伪集群只能用于日常测试之用,根本无法满足实际的线上生产需求. 操作系统: kafka由S ...
- mysql5.5 升级至5.7
mysql5.5 升级至5.7 1.下载mysql5.7.32 官方下载地址 解压 tar xvf mysql.tar.gz mysql/ 2. 进入旧的mysql的bin目录下导出mysql的数据 ...
- 06--Docker自定义镜像Tomcat9
1. 创建目录 /zhengcj/mydockerfile/tomcat9 2.将jdk和tomcat的安装包拷贝到tomcat9下 3.在tomcat9目录下创建Dockerfile文件,并写以下命 ...
- [Usaco2008 Mar]Cow Travelling游荡的奶牛
题目描述 奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走,试图找到整块草地中最美味的牧草.Farmer John在某个时刻看见 ...