【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)
题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账。
解法:带权并查集+前缀和。
判断账本真假是通过之前可算到的答案与当前读入的值是否相同来完成。那么就是只有知道新读入的区间2端的(在相同区域内的!!)前缀和才可以判断,也就是这2个端点之前被纳入了相同的区域内才可以判断。于是,我们就可以想到并查集了。(( ′◔ ‸◔`) 真的么......)
假设已知x~y月的总收入为d,那么s[y]-s[x-1]=d。一般前缀和是算上自己的,这里我理解s[i]为在 i 所在的区域内 i 之前的数的大小。接着,当x,y不在相同区域内时就将其合并,在时就判断。
P.S.网上似乎还有人用查分约束的方法做。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=105,M=1005;
8 int n,m;
9 int fa[N],f[N];
10 bool flag;
11
12 int ffind(int x)
13 {
14 if (fa[x]!=x)
15 {
16 int fx=fa[x];
17 fa[x]=ffind(fx);
18 f[x]+=f[fx];
19 }
20 return fa[x];
21 }
22 void ins(int x,int y,int d)
23 {
24 int fx=ffind(x),fy=ffind(y);
25 if (fx!=fy)
26 {
27 fa[fx]=fy;//at ease
28 f[fx]=f[y]+d-f[x];
29 }
30 else if (f[x]-f[y]!=d) flag=false;
31 }
32 int main()
33 {
34 int T;
35 scanf("%d",&T);
36 while (T--)
37 {
38 int x,y,d;
39 scanf("%d%d",&n,&m);
40 flag=true;
41 for (int i=0;i<=n;i++) fa[i]=i,f[i]=0;
42 for (int i=1;i<=m;i++)
43 {
44 scanf("%d%d%d",&x,&y,&d);//s[y]-s[x-1]=d
45 if (flag) ins(x-1,y,d);
46 }
47 if (flag) printf("true\n");
48 else printf("false\n");
49 }
50 return 0;
51 }
我再附个简图好了,自己真心理解了很久很久~(┬_┬)模版题设这个:【poj 1962】Corporative Network(图论--带权并查集 模版题)
当然画 树 应该比画方块更好,我是因为接触带权并查集的第一题是【poj 1988】Cube Stacking(图论--带权并查集),所以才理解代码这些都是这样看的。这样的图是可以理解的,画树更本质,更好。
【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)的更多相关文章
- Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)
题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...
- 【poj 1984】&【bzoj 3362】Navigation Nightmare(图论--带权并查集)
题意:平面上给出N个点,知道M个关于点X在点Y的正东/西/南/北方向的距离.问在刚给出一定关系之后其中2点的曼哈顿距离((x1,y1)与(x2,y2):l x1-x2 l+l y1-y2 l),未知则 ...
- BZOJ1202:狡猾的商人(带权并查集)
1202: [HNOI2005]狡猾的商人 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1202 Description: 刁姹接到一个 ...
- 1202. [HNOI2005]狡猾的商人【贪心 或 并查集】
Description 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i=1,2,3...n-1,n), .当 ...
- 【poj 1182】食物链(图论--带权并查集)
题意:有3种动物A.B.C,形成一个"A吃B, B吃C,C吃A "的食物链.有一个人对N只这3类的动物有M种说法:第一种说法是"1 X Y",表示X和Y是同类. ...
- 【poj 1962】Corporative Network(图论--带权并查集 模版题)
P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...
- 【poj 1988】Cube Stacking(图论--带权并查集)
题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...
- BZOJ 1202: [HNOI2005]狡猾的商人 [带权并查集]
题意: 给出m个区间和,询问是否有区间和和之前给出的矛盾 NOIp之前做过hdu3038..... 带权并查集维护到根的权值和,向左合并 #include <iostream> #incl ...
- BZOJ 1202: [HNOI2005]狡猾的商人( 差分约束 )
好像很多人用并查集写的... 前缀和, 则 sumt - sums-1 = v, 拆成2条 : sumt ≤ sums-1 + v, sums-1 ≤ sumt - v 就是一个差分约束, 建图跑SP ...
随机推荐
- 一文带你探究Sentinel的独特初始化
摘要:本系列通过作者对Redis Sentinel源码的理解,详细说明Sentinel的代码实现方式. Redis Sentinel 是Redis提供的高可用模型解决方案.Sentinel可以自动监测 ...
- Java 安全之Weblogic 2018-2628&2018-2893分析
Java 安全之Weblogic 2018-2628&2018-2893分析 0x00 前言 续上一个weblogic T3协议的反序列化漏洞接着分析该补丁的绕过方式,根据weblogic的补 ...
- 【Oracle】修改oracle中SGA区的大小
1.备份数据库: 2.关机,拔下电源和各种连接线,抽出机箱,打开机箱上盖,增加内存: 3.完成后按原样将各个部件及连接线恢复好,电开机,系统正常运行: 4.进入系统查看,发现内存已经顺利安装: 5.修 ...
- 【TNS】TNS-00515 TNS-12560 TNS-12545解决方案
今天同事的plsql连接不上数据库,我用他的本地tnsping是不通的,于是上服务器上查看下,结果发现监听没起来,不知道怎么就断了 再次尝试重启 lsnrctl start 发现直接报错: NSLSN ...
- [MRCTF2020]你传你🐎呢之.htaccess
前言 最近,也是遇到了文件上传的文件,自己搭的靶场都不能用,今天,在这里又遇到了这个题.简单总结下,内容来自互联网,若有侵权,联系我. .htaccess简介 .htaccess文件(分布式配置文件) ...
- PyTorch 于 JupyterLab 的环境准备
PyTorch 是目前主流的深度学习框架之一,而 JupyterLab 是基于 Web 的交互式笔记本环境.于 JupyterLab 我们可以边记笔记的同时.边执行 PyTorch 代码,便于自己学习 ...
- 定制个性化的GUI
你现在还在使用SAP GUI710或者是GUI720,又或者更早的640等吗?那么古董先生,推荐您使用GUI730吧,您可能会730好在哪?那我建议您去百度或者Google问吧.对于新的GUI730, ...
- k8s-jenkins持续发布tomcat项目
k8s-jenkins持续发布tomcat项目 一.需求 这个实验前期后后搞了很久(公司经常插一些别的事过来,然后自己比较懒,再加上自己知识不够扎实).二进制部署完k8s集群就开始做jenkins持续 ...
- 抛弃 .NET 经典错误:object null reference , 使用安全扩展方法? 希望对大家有帮助---Bitter.Frame 引用类型的安全转换
还是一样,我不喜欢长篇大论,除非关乎我设计思想领域的文章.大家过来看,都是想节省时间,能用白话表达的内容,绝不长篇大论.能直接上核心代码的,绝不上混淆代码. 长期从事 .NET 工作的人都知道..NE ...
- Servlet中的一些注意事项
servlet中的一些注意事项 1 什么是servlet? 1)Servlet是Sun公司制定的一套技术标准,包含与Web应用相关的一系列接口,是Web应用实现方式的宏观解决方案.而具体的Servle ...