Drainage Ditches

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67823   Accepted: 26209

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

Source

——————————我是分割线——————————————————————————————————————————————————
水题,模板题。
网络流,最大流。
增广路算法求解。
我竟然调了两个钟头......
正解是DINIC增广,但我直接BFS增广竟然也过了……
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cassert>
#include<climits>
#define maxn 210
using namespace std;
void find();
void flow();
void update();
struct Edge
{
int c;
int f;
}edge[maxn][maxn];
int n,m;
int s,t;
int residual[maxn][maxn];
int que[maxn*maxn],head,tail;
int pre[maxn];
bool vis[maxn];
int max_flow,min_flow;
void find()
{
int i,cu;
memset(vis,false,sizeof(vis));
memset(residual,,sizeof(residual));
memset(pre,,sizeof(pre));
head=;que[head]=s;pre[s]=s;vis[s]=true;tail=;
while(head<tail&&pre[t]==)
{
cu=que[head];
for(i=;i<=n;i++)
{
if(vis[i]==false)
{
if(edge[cu][i].c-edge[cu][i].f>)
{
residual[cu][i]=edge[cu][i].c-edge[cu][i].f;
pre[i]=cu;que[tail++]=i;vis[i]=true;
}
else if(edge[i][cu].f>)
{
residual[cu][i]=edge[i][cu].f;
pre[i]=cu;que[tail++]=i;vis[i]=true;
}
}
}
head++;
}
}
void flow()
{
int i=t,j;
if(pre[i]==)
{
min_flow=;return;
}
j=0x7fffffff;
while(i!=s)
{
if(residual[pre[i]][i]<j) j=residual[pre[i]][i];
i=pre[i];
}
min_flow=j;
}
void update()
{
int i=t;
if(pre[i]==) return;
while(i!=s)
{
if(edge[pre[i]][i].c-edge[pre[i]][i].f>)
edge[pre[i]][i].f+=min_flow;
else if(edge[i][pre[i]].f>)
edge[pre[i]][i].f+=min_flow;
i=pre[i];
}
}
void solve()
{
s=;t=n;
max_flow=;
while(true)
{
find();flow();
max_flow+=min_flow;
if(min_flow>) update();
else return;
}
}
int main()
{
std::ios::sync_with_stdio(false);
int i,u,v,c;
while(scanf("%d %d",&m,&n)!=EOF)
{
memset(edge,,sizeof(edge));
for(i=;i<m;i++)
{
scanf("%d %d %d",&u,&v,&c);
edge[u][v].c+=c;
}
solve();
printf("%d\n",max_flow);
}
return ;
}

POJ 1273 Drainage Ditches题解——S.B.S.的更多相关文章

  1. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  2. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  3. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  4. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  5. poj 1273 Drainage Ditches(最大流,E-K算法)

    一.Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clove ...

  6. POJ 1273 Drainage Ditches

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67387   Accepted: 2603 ...

  7. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  8. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  9. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

随机推荐

  1. 自定义分页控件PageList

    using System; using System.Collections; using System.Collections.Generic; using System.Linq; using S ...

  2. jQuery弹出美女大图片

    效果:http://hovertree.com/texiao/jqimg/2/ 效果图: 下载:http://hovertree.com/h/bjaf/jdaqepet.htm HTML代码: < ...

  3. SqlServer-无限递归树状图结构设计和查询

    在现实生活中,公司的部门设计会涉及到很多子部门,然后子部门下面又存在子部门,形成类似判断的树状结构,比如说评论楼中楼的评论树状图,职位管理的树状图结构等等,实现类似的树状图数据结构是在开发中经常出现的 ...

  4. Asp.net mvc5开源项目"超级冷笑话"

    业务时间做了个小网站,超级冷笑话,地址:http://www.superjokes.cn/ 开发技术: asp.net mvc5 +SQLServer2012 ORM:NPoco 用了简单的三层结构 ...

  5. jQuery基础_4

    dom对象就是jquery对象的数组组成部分jquery对象和dom对象的转化jquery对象-->dom对象$()[下标]dom对象-->jquery对象$(dom对象) jquery框 ...

  6. 渗透测试-奇技淫巧(一)--源IP地址隐藏

    切记,切记.本文只作为技术交流,提醒各位注意网络安全,请勿用于其它用途,否则后果自付. 在很多时候,某某不希望不愿意有人溯源他的地址.他们是如何隐藏IP的? 今天来浅析下,如何隐藏源地址. 用到的工具 ...

  7. How To Collect ULS Log from SharePoint Farm

    We can use below command to collect SharePoint ULS log from all servers in the Farm in PowerShell. M ...

  8. iOS之数组的排序(升序、降序及乱序)

    #pragma mark -- 数组排序方法(升序) - (void)arraySortASC{ //数组排序 //定义一个数字数组 NSArray *array = @[@(3),@(4),@(2) ...

  9. iOS 系统分析(一) 阅读内核准备知识

    ➠更多技术干货请戳:听云博客 0x01 iOS体系架构 1.1 iOS 系统的整体体系架构 用户体验( The User Experience layer ):SpringBoard 同时支持 Spo ...

  10. width 、 height 与 box-sizing : border-box ,content-box 的关系

    默认 width .height的 content-box 的宽高. box-sizing 经常用来设置 width.height指定的区域 box-sizing 经常用做一些自适应的布局. 语法: ...