1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4863  Solved: 1973
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8
 
 
 
【题解】

就是不同的最小生成树方案,每种权值的边的数量是确定的,每种权值的边的作用是确定的

排序以后先做一遍最小生成树,得出每种权值的边使用的数量x

然后对于每一种权值的边搜索,得出每一种权值的边选择方案

然后乘法原理

转自——hzwer.com

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<ctime>
using namespace std;
#define mod 31011
int n,m,len,sum,tot,ans=,f[];
struct node{int x,y,v;}e[];
struct sha{int l,r,v;}a[];
bool cmp(node a,node b) {return a.v<b.v;}
int find(int x) {return f[x]==x?x:find(f[x]);}
namespace INIT
{
char buf[<<],*fs,*ft;
inline char getc() {return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin),fs==ft))?:*fs++;}
inline int read()
{
int x=,f=; char ch=getc();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getc();}
while(isdigit(ch)) {x=x*+ch-''; ch=getc();}
return x*f;
}
}using namespace INIT;
void dfs(int x,int now,int k)
{
if(now==a[x].r+)
{
if(k==a[x].v) sum++;
return;
}
int p=find(e[now].x),q=find(e[now].y);
if(p!=q)
{
f[p]=q;
dfs(x,now+,k+);
f[p]=p; f[q]=q;
}
dfs(x,now+,k);
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read();
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=m;i++) e[i].x=read(),e[i].y=read(),e[i].v=read();
sort(e+,e+m+,cmp);
for(int i=;i<=m;i++)
{
if(e[i].v!=e[i-].v) {a[++len].l=i;a[len-].r=i-;}
int p=find(e[i].x),q=find(e[i].y);
if(p!=q) {f[p]=q; a[len].v++; tot++;}
}
a[len].r=m;
if(tot!=n-) {printf("0\n"); return ;}
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=len;i++)
{
sum=;
dfs(i,a[i].l,);
ans=(ans*sum)%mod;
for(int j=a[i].l;j<=a[i].r;j++)
{
int p=find(e[j].x),q=find(e[j].y);
if(p!=q) f[p]=q;
}
}
printf("%d\n",ans);
return ;
}

【bzoj1016】[JSOI2008]最小生成树计数的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  2. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  3. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  6. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

  7. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)

    传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...

  10. [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...

随机推荐

  1. RIP 知识要点

    RIP知识要点: UDP:520 版本:v1(广播包更新) / v2(组播更新 224.0.0.9  ) 度量值:跳数(最多跳15跳,路由为16跳时路由不可达) =================== ...

  2. SQLServer清空数据库中所有表的数据

    今早同事跟进客户反馈的问题时,提了个要求,要求清空数据库中所有表的数据. 记得之前用游标遍历所有的表名 + exec 动态语句 truncate table 表名 实现过这个功能. 网上搜了下,有更简 ...

  3. Java 三大特征之--多态

    http://www.cnblogs.com/chenssy/p/3372798.html

  4. Python基本特殊方法之__new__

    __new__()和不可变对象 __new__方法的一个用途是初始化不可变对象,__new()__方法中允许创建未初始化的对象,这允许我们在__init__()方法被调用之前先设置对象的属性 例:为f ...

  5. js对象原型链

    JavaScript 规定,每一个构造函数都有一个 prototype 属性,指向另一个对象.这个对象的所有属性和方法,都会被构造函数的所拥有. 这也就意味着,我们可以把所有对象实例需要共享的属性和方 ...

  6. webpack新版本4.12应用九(配置文件之模块(module))

    这些选项决定了如何处理项目中的不同类型的模块. module.noParse RegExp | [RegExp] RegExp | [RegExp] | function(从 webpack 3.0. ...

  7. .NET程序如何启动?

    .net程序如何启动? .NET Framework在Windows平台顶部运行,这意味着.NET Framework必须使用 windows可以理解的技术来构建.首先,所有托管模块和程序集文件都必须 ...

  8. svn配置及基本使用

    svn软件下载地址http://subversion.apache.org/packages.html在安装TortoiseSVN时安装客户端和服务端 下以svn在windows下使用为例,linux ...

  9. 配置MapReduce插件时,弹窗报错org/apache/hadoop/eclipse/preferences/MapReducePreferencePage : Unsupported major.minor version 51.0(Hadoop2.7.3集群部署)

    原因: hadoop-eclipse-plugin-2.7.3.jar 编译的jdk版本和eclipse启动使用的jdk版本不一致导致.  解决方案一: 修改myeclipse.ini文件即可解决. ...

  10. 如果axios请求失败,如何获取后端接口返回的状态码及错误信息

    这两天在工作中遇到一个问题,一个请求返回400错误,我需要向用户展示后端返回的错误信息,但是用普通的catch方法只能获取到浏览器返回的400错误提示,不能获取到后端返回的,后经查阅得出下面方法: a ...